Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
Chembiochem. 2021 Mar 16;22(6):949-960. doi: 10.1002/cbic.202000661. Epub 2020 Nov 17.
Hydrogen sulfide (H S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q reduction in the electron transport chain. The SQOR reaction prevents H S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H S. This dual role of SQOR makes it a promising target for H S-based therapeutics.
硫化氢 (H₂S) 是一种环境毒素,也是古老微生物代谢的产物。在发现其作为神经调节剂的作用后,它引起了人们的新兴趣。虽然许多生理反应都归因于低水平的 H₂S,但高水平的 H₂S 会抑制电子传递链中的复合物 IV。为了防止呼吸中毒,存在一组专门的酶来清除 H₂S,这些酶构成了线粒体硫化物氧化途径。该途径中的关键步骤由硫化物醌氧化还原酶 (SQOR) 催化,该酶将硫化物氧化与电子传递链中的辅酶 Q 还原偶联。SQOR 反应可防止 H₂S 积累,并生成具有高反应性的过硫化物作为产物;这些产物可以进一步被氧化,或者通过过硫化修饰蛋白质中的半胱氨酸残基。在这里,我们回顾了人源 SQOR 的动力学和结构特征,以及其非常规的氧化还原辅因子构型和底物的混杂性如何导致硫化物的清除,并可能扩大 H₂S 的信号转导潜力。SQOR 的这种双重作用使其成为基于 H₂S 的治疗的有前途的靶标。