Suppr超能文献

保守和自由的态度驱动对政治内容的两极化神经反应。

Conservative and liberal attitudes drive polarized neural responses to political content.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720;

Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27731-27739. doi: 10.1073/pnas.2008530117. Epub 2020 Oct 20.

Abstract

People tend to interpret political information in a manner that confirms their prior beliefs, a cognitive bias that contributes to rising political polarization. In this study, we combined functional magnetic resonance imaging with semantic content analyses to investigate the neural mechanisms that underlie the biased processing of real-world political content. We scanned American participants with conservative-leaning or liberal-leaning immigration attitudes while they watched news clips, campaign ads, and public speeches related to immigration policy. We searched for evidence of "neural polarization": activity in the brain that diverges between people who hold liberal versus conservative political attitudes. Neural polarization was observed in the dorsomedial prefrontal cortex (DMPFC), a brain region associated with the interpretation of narrative content. Neural polarization in the DMPFC intensified during moments in the videos that included risk-related and moral-emotional language, highlighting content features most likely to drive divergent interpretations between conservatives and liberals. Finally, participants whose DMPFC activity closely matched that of the average conservative or the average liberal participant were more likely to change their attitudes in the direction of that group's position. Our work introduces a multimethod approach to study the neural basis of political cognition in naturalistic settings. Using this approach, we characterize how political attitudes biased information processing in the brain, the language most likely to drive polarized neural responses, and the consequences of biased processing for attitude change. Together, these results shed light on the psychological and neural underpinnings of how identical information is interpreted differently by conservatives and liberals.

摘要

人们倾向于以符合其先前信念的方式来解释政治信息,这种认知偏差导致了政治分歧的加剧。在这项研究中,我们结合功能磁共振成像和语义内容分析,研究了导致对现实政治内容产生偏见处理的神经机制。我们扫描了具有保守倾向或自由倾向移民态度的美国参与者,同时让他们观看与移民政策相关的新闻片段、竞选广告和公开演讲。我们寻找“神经极化”的证据:即具有自由和保守政治态度的人之间大脑活动的差异。在与解释叙述性内容相关的背内侧前额叶皮层(DMPFC)中观察到了神经极化。当视频中包含与风险相关和道德情感的语言时,DMPFC 中的神经极化加剧,突出了最有可能导致保守派和自由派之间不同解释的内容特征。最后,DMPFC 活动与平均保守派或平均自由派参与者的活动密切匹配的参与者更有可能朝着该群体立场的方向改变自己的态度。我们的工作介绍了一种在自然环境中研究政治认知神经基础的多方法方法。使用这种方法,我们描述了政治态度如何在大脑中对信息处理产生偏见,以及最有可能引发极化神经反应的语言,以及偏见处理对态度改变的后果。这些结果共同揭示了相同信息如何被保守派和自由派以不同方式解释的心理和神经基础。

相似文献

3
Shifting liberal and conservative attitudes using moral foundations theory.运用道德基础理论转变自由主义和保守主义态度。
Pers Soc Psychol Bull. 2014 Dec;40(12):1559-73. doi: 10.1177/0146167214551152. Epub 2014 Oct 6.
5
Past-focused environmental comparisons promote proenvironmental outcomes for conservatives.关注过去的环境比较促进了保守派的环保成果。
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):14953-14957. doi: 10.1073/pnas.1610834113. Epub 2016 Dec 12.
8
The moral roots of environmental attitudes.环境态度的道德根源。
Psychol Sci. 2013 Jan 1;24(1):56-62. doi: 10.1177/0956797612449177. Epub 2012 Dec 10.

引用本文的文献

本文引用的文献

2
Neurocomputational mechanisms underlying motivated seeing.动机性视觉的神经计算机制。
Nat Hum Behav. 2019 Sep;3(9):962-973. doi: 10.1038/s41562-019-0637-z. Epub 2019 Jul 1.
6
Shared understanding of narratives is correlated with shared neural responses.叙事的共同理解与共同的神经反应相关。
Neuroimage. 2019 Jan 1;184:161-170. doi: 10.1016/j.neuroimage.2018.09.010. Epub 2018 Sep 12.
7
Exposure to opposing views on social media can increase political polarization.社交媒体上接触对立观点会加剧政治极化。
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9216-9221. doi: 10.1073/pnas.1804840115. Epub 2018 Aug 28.
9
The Partisan Brain: An Identity-Based Model of Political Belief.《党派大脑:基于身份认同的政治信仰模式》
Trends Cogn Sci. 2018 Mar;22(3):213-224. doi: 10.1016/j.tics.2018.01.004. Epub 2018 Feb 20.
10
Similar neural responses predict friendship.相似的神经反应预示着友谊。
Nat Commun. 2018 Jan 30;9(1):332. doi: 10.1038/s41467-017-02722-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验