Del Giudice F, Becker J, de Rose C, Döblinger M, Ruhstorfer D, Suomenniemi L, Treu J, Riedl H, Finley J J, Koblmüller G
Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany.
Nanoscale. 2020 Nov 5;12(42):21857-21868. doi: 10.1039/d0nr05666a.
Ultrathin InAs nanowires (NW) with a one-dimensional (1D) sub-band structure are promising materials for advanced quantum-electronic devices, where dimensions in the sub-30 nm diameter limit together with post-CMOS integration scenarios on Si are much desired. Here, we demonstrate two site-selective synthesis methods that achieve epitaxial, high aspect ratio InAs NWs on Si with ultrathin diameters below 20 nm. The first approach exploits direct vapor-solid growth to tune the NW diameter by interwire spacing, mask opening size and growth time. The second scheme explores a unique reverse-reaction growth by which the sidewalls of InAs NWs are thermally decomposed under controlled arsenic flux and annealing time. Interesting kinetically limited dependencies between interwire spacing and thinning dynamics are found, yielding diameters as low as 12 nm for sparse NW arrays. We clearly verify the 1D sub-band structure in ultrathin NWs by pronounced conductance steps in low-temperature transport measurements using back-gated NW-field effect transistors. Correlated simulations reveal single- and double degenerate conductance steps, which highlight the rotational hexagonal symmetry and reproduce the experimental traces in the diffusive 1D transport limit. Modelling under the realistic back-gate configuration further evidences regimes that lead to asymmetric carrier distribution and breakdown of the degeneracy depending on the gate bias.
具有一维(1D)子带结构的超薄砷化铟纳米线(NW)是用于先进量子电子器件的有前景的材料,其中非常需要直径在30纳米以下的尺寸以及在硅上的后CMOS集成方案。在这里,我们展示了两种位点选择性合成方法,可在硅上实现外延、高纵横比且直径低于20纳米的超薄砷化铟纳米线。第一种方法利用直接气-固生长,通过线间距、掩膜开口尺寸和生长时间来调节纳米线直径。第二种方案探索了一种独特的逆反应生长,通过这种生长,在受控的砷通量和退火时间下,砷化铟纳米线的侧壁会发生热分解。发现了线间距与细化动力学之间有趣的动力学限制依赖性,对于稀疏纳米线阵列,可产生低至12纳米的直径。我们通过使用背栅纳米线场效应晶体管的低温传输测量中的明显电导台阶,清楚地验证了超薄纳米线中的一维子带结构。相关模拟揭示了单简并和双简并电导台阶,突出了旋转六边形对称性,并在扩散一维传输极限下重现了实验轨迹。在实际背栅配置下的建模进一步证明了根据栅极偏置导致不对称载流子分布和简并性破坏的机制。