Suppr超能文献

表位预测和鉴定——人类适应性 T 细胞反应。

Epitope prediction and identification- adaptive T cell responses in humans.

机构信息

Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.

Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.

出版信息

Semin Immunol. 2020 Aug;50:101418. doi: 10.1016/j.smim.2020.101418. Epub 2020 Oct 31.

Abstract

Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.

摘要

在 T 细胞识别的背景下,表位是通过抗原加工产生的短肽,通常与 MHC 分子(人类中的 HLA 分子)结合并呈现在细胞表面,以供 TCR 检查。表位的识别是一个依赖于上下文的过程,需要考虑例如病原体和蛋白质的来源、宿主生物体以及免疫反应的状态(例如,自然感染后、接种疫苗后等)。在以下综述中,我们考虑了用于定义 T 细胞表位的各种方法,包括生物信息学和实验方法,并讨论了免疫显性和免疫普遍性的概念。我们还讨论了 HLA 多态性和表位限制,以及这对表位或基于表位的疫苗的鉴定和潜在人群覆盖的影响。最后,提供了 T 细胞表位鉴定的一些实际应用示例,展示了表位如何在各种病原体和过敏原免疫反应的背景下为获得新的免疫学见解提供了有价值的信息。

相似文献

1
Epitope prediction and identification- adaptive T cell responses in humans.
Semin Immunol. 2020 Aug;50:101418. doi: 10.1016/j.smim.2020.101418. Epub 2020 Oct 31.
2
Predicting population coverage of T-cell epitope-based diagnostics and vaccines.
BMC Bioinformatics. 2006 Mar 17;7:153. doi: 10.1186/1471-2105-7-153.
4
Fundamentals and Methods for T- and B-Cell Epitope Prediction.
J Immunol Res. 2017;2017:2680160. doi: 10.1155/2017/2680160. Epub 2017 Dec 28.
6
CD4+ T-cell epitope prediction using antigen processing constraints.
J Immunol Methods. 2016 May;432:72-81. doi: 10.1016/j.jim.2016.02.013. Epub 2016 Feb 15.

引用本文的文献

1
Deep learning in next-generation vaccine development for infectious diseases.
Mol Ther Nucleic Acids. 2025 Jun 4;36(3):102586. doi: 10.1016/j.omtn.2025.102586. eCollection 2025 Sep 9.
3
Immunogenicity Evaluation of Epitope-Based Vaccine on Target of RNAIII-Activating Protein (TRAP) of .
Biology (Basel). 2025 May 27;14(6):616. doi: 10.3390/biology14060616.
5
screening and identification of CTL and HTL epitopes in the secreted virulence factors of Mycobacterium tuberculosis.
BioTechnologia (Pozn). 2025 Mar 31;106(1):63-76. doi: 10.5114/bta/201461. eCollection 2025.
6
Frequency of dengue virus-specific T cells is related to infection outcome in endemic settings.
JCI Insight. 2025 Feb 24;10(4):e179771. doi: 10.1172/jci.insight.179771.
8
Clonal analysis of SepSecS-specific B and T cells in autoimmune hepatitis.
J Clin Invest. 2025 Jan 16;135(2):e183776. doi: 10.1172/JCI183776.
9
Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti- Vaccine.
ACS Pharmacol Transl Sci. 2024 Dec 31;8(1):78-96. doi: 10.1021/acsptsci.4c00341. eCollection 2025 Jan 10.

本文引用的文献

1
Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans.
Science. 2020 Oct 2;370(6512):89-94. doi: 10.1126/science.abd3871. Epub 2020 Aug 4.
2
Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination.
Immunohorizons. 2020 Aug 4;4(8):444-453. doi: 10.4049/immunohorizons.2000068.
3
Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions.
Cell Syst. 2020 Aug 26;11(2):131-144.e6. doi: 10.1016/j.cels.2020.06.009. Epub 2020 Jul 27.
4
MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing.
Cell Syst. 2020 Jul 22;11(1):42-48.e7. doi: 10.1016/j.cels.2020.06.010. Epub 2020 Jul 14.
6
MAIT Cell Activation and Functions.
Front Immunol. 2020 May 27;11:1014. doi: 10.3389/fimmu.2020.01014. eCollection 2020.
7
Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.
Cell. 2020 Jun 25;181(7):1489-1501.e15. doi: 10.1016/j.cell.2020.05.015. Epub 2020 May 20.
8
Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
PLoS Comput Biol. 2020 May 26;16(5):e1007757. doi: 10.1371/journal.pcbi.1007757. eCollection 2020 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验