Suppr超能文献

用于转移印刷的自动化纳米级绝对精度对准系统

Automated Nanoscale Absolute Accuracy Alignment System for Transfer Printing.

作者信息

McPhillimy John, Jevtics Dimitars, Guilhabert Benoit J E, Klitis Charalambos, Hurtado Antonio, Sorel Marc, Dawson Martin D, Strain Michael J

机构信息

Institute of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow, United Kingdom.

School of Engineering, University of Glasgow, Glasgow, United Kingdom.

出版信息

ACS Appl Nano Mater. 2020 Oct 23;3(10):10326-10332. doi: 10.1021/acsanm.0c02224. Epub 2020 Sep 23.

Abstract

The heterogeneous integration of micro- and nanoscale devices with on-chip circuits and waveguide platforms is a key enabling technology, with wide-ranging applications in areas including telecommunications, quantum information processing, and sensing. Pick and place integration with absolute positional accuracy at the nanoscale has been previously demonstrated for single proof-of-principle devices. However, to enable scaling of this technology for realization of multielement systems or high throughput manufacturing, the integration process must be compatible with automation while retaining nanoscale accuracy. In this work, an automated transfer printing process is realized by using a simple optical microscope, computer vision, and high accuracy translational stage system. Automatic alignment using a cross-correlation image processing method demonstrates absolute positional accuracy of transfer with an average offset of <40 nm (3σ < 390 nm) for serial device integration of both thin film silicon membranes and single nanowire devices. Parallel transfer of devices across a 2 × 2 mm area is demonstrated with an average offset of <30 nm (3σ < 705 nm). Rotational accuracy better than 45 mrad is achieved for all device variants. Devices can be selected and placed with high accuracy on a target substrate, both from lithographically defined positions on their native substrate or from a randomly distributed population. These demonstrations pave the way for future scalable manufacturing of heterogeneously integrated chip systems.

摘要

微纳尺度器件与片上电路及波导平台的异质集成是一项关键使能技术,在电信、量子信息处理和传感等领域有着广泛应用。此前已针对单个原理验证器件展示了纳米级绝对位置精度的拾取和放置集成。然而,为了实现该技术的规模化以制造多元素系统或进行高通量制造,集成过程必须与自动化兼容,同时保持纳米级精度。在这项工作中,通过使用简单的光学显微镜、计算机视觉和高精度平移台系统实现了一种自动转移印刷工艺。使用互相关图像处理方法进行的自动对准展示了转移的绝对位置精度,对于薄膜硅膜和单纳米线器件的串行器件集成,平均偏移量<40 nm(3σ<390 nm)。在2×2 mm区域内对器件进行并行转移,平均偏移量<30 nm(3σ<705 nm)。所有器件变体的旋转精度均优于45 mrad。器件可以从其原始衬底上光刻定义的位置或从随机分布的群体中高精度地选择并放置在目标衬底上。这些演示为未来异质集成芯片系统的可扩展制造铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e4d/7590505/906cf8c02c04/an0c02224_0001.jpg

相似文献

1
Automated Nanoscale Absolute Accuracy Alignment System for Transfer Printing.
ACS Appl Nano Mater. 2020 Oct 23;3(10):10326-10332. doi: 10.1021/acsanm.0c02224. Epub 2020 Sep 23.
2
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Nano Lett. 2017 Dec 13;17(12):7394-7400. doi: 10.1021/acs.nanolett.7b03220. Epub 2017 Nov 17.
3
Characterization, Selection, and Microassembly of Nanowire Laser Systems.
Nano Lett. 2020 Mar 11;20(3):1862-1868. doi: 10.1021/acs.nanolett.9b05078. Epub 2020 Feb 14.
4
High accuracy transfer printing of single-mode membrane silicon photonic devices.
Opt Express. 2018 Jun 25;26(13):16679-16688. doi: 10.1364/OE.26.016679.
5
Automated Computer Vision-Enabled Manufacturing of Nanowire Devices.
ACS Nano. 2022 Nov 22;16(11):18009-18017. doi: 10.1021/acsnano.2c08187. Epub 2022 Sep 26.
7
Novel adiabatic tapered couplers for active III-V/SOI devices fabricated through transfer printing.
Opt Express. 2016 Jun 13;24(12):12976-90. doi: 10.1364/OE.24.012976.
8
Plasmonic Waveguide-Integrated Nanowire Laser.
Nano Lett. 2017 Feb 8;17(2):747-754. doi: 10.1021/acs.nanolett.6b03879. Epub 2017 Jan 9.
10
Integrated silicon photonic MEMS.
Microsyst Nanoeng. 2023 Mar 20;9:27. doi: 10.1038/s41378-023-00498-z. eCollection 2023.

引用本文的文献

2
Recent progress in hybrid diamond photonics for quantum information processing and sensing.
Commun Eng. 2025 May 8;4(1):85. doi: 10.1038/s44172-025-00398-2.
4
Modulation of Nanowire Emitter Arrays Using Micro-LED Technology.
ACS Nano. 2025 Apr 29;19(16):15813-15819. doi: 10.1021/acsnano.5c00474. Epub 2025 Apr 16.
5
From Printed Devices to Vertically Stacked, 3D Flexible Hybrid Systems.
Adv Mater. 2025 Mar;37(10):e2411151. doi: 10.1002/adma.202411151. Epub 2025 Jan 29.
6
Machine Learning Inspired Nanowire Classification Method based on Nanowire Array Scanning Electron Microscope Images.
Open Res Eur. 2024 Jun 28;4:43. doi: 10.12688/openreseurope.16696.2. eCollection 2024.
7
Additive GaN Solid Immersion Lenses for Enhanced Photon Extraction Efficiency from Diamond Color Centers.
ACS Photonics. 2023 Aug 30;10(9):3374-3383. doi: 10.1021/acsphotonics.3c00854. eCollection 2023 Sep 20.

本文引用的文献

1
Hybrid integrated quantum photonic circuits.
Nat Photonics. 2020;14(5). doi: 10.1038/s41566-020-0609-x.
2
Large-scale integration of artificial atoms in hybrid photonic circuits.
Nature. 2020 Jul;583(7815):226-231. doi: 10.1038/s41586-020-2441-3. Epub 2020 Jul 8.
3
On-chip single-mode CdS nanowire laser.
Light Sci Appl. 2020 Mar 16;9:42. doi: 10.1038/s41377-020-0277-0. eCollection 2020.
5
Characterization, Selection, and Microassembly of Nanowire Laser Systems.
Nano Lett. 2020 Mar 11;20(3):1862-1868. doi: 10.1021/acs.nanolett.9b05078. Epub 2020 Feb 14.
6
High accuracy transfer printing of single-mode membrane silicon photonic devices.
Opt Express. 2018 Jun 25;26(13):16679-16688. doi: 10.1364/OE.26.016679.
7
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Nano Lett. 2017 Dec 13;17(12):7394-7400. doi: 10.1021/acs.nanolett.7b03220. Epub 2017 Nov 17.
8
Transfer Printing of Semiconductor Nanowires with Lasing Emission for Controllable Nanophotonic Device Fabrication.
ACS Nano. 2016 Apr 26;10(4):3951-8. doi: 10.1021/acsnano.5b07752. Epub 2016 Mar 17.
9
Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing.
Nano Lett. 2014 Sep 10;14(9):5206-11. doi: 10.1021/nl5021409. Epub 2014 Aug 15.
10
Tracking image correlation: combining single-particle tracking and image correlation.
Biophys J. 2013 Jun 4;104(11):2373-82. doi: 10.1016/j.bpj.2013.04.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验