Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden.
ACS Sens. 2020 Nov 25;5(11):3510-3519. doi: 10.1021/acssensors.0c01623. Epub 2020 Nov 3.
Understanding the binding mechanism between probe-functionalized magnetic nanoparticles (MNPs) and DNA targets or amplification products thereof is essential in the optimization of magnetic biosensors for the detection of DNA. Herein, the molecular interaction forming hybrid structures upon hybridization between DNA-functionalized magnetic nanoparticles, exhibiting Brownian relaxation, and rolling circle amplification products (DNA-coils) is investigated by the use of atomic force microscopy in a liquid environment and magnetic biosensors measuring the frequency-dependent magnetic response and the frequency-dependent modulation of light transmission. This approach reveals the qualitative and quantitative correlations between the morphological features of the hybrid structures with their magnetic response. The suppression of the high-frequency peak in the magnetic response and the appearance of a new peak at lower frequencies match the formation of larger sized assemblies upon increasing the concentration of DNA-coils. Furthermore, an increase of the DNA-coil concentration induces an increase in the number of MNPs per hybrid structure. This study provides new insights into the DNA-MNP binding mechanism, and its versatility is of considerable importance for the mechanistic characterization of other DNA-nanoparticle biosensor systems.
理解探针功能化磁性纳米粒子(MNPs)与 DNA 靶标或其扩增产物之间的结合机制,对于优化用于检测 DNA 的磁性生物传感器至关重要。在此,通过原子力显微镜在液体环境中和测量频率相关磁响应和光传输频率相关调制的磁性生物传感器,研究了在 DNA 功能化磁性纳米粒子的杂交过程中形成杂交结构的分子相互作用,表现出布朗松弛和滚环扩增产物(DNA 线圈)。这种方法揭示了杂交结构的形态特征与其磁响应之间的定性和定量相关性。磁响应中高频峰的抑制和低频出现新峰与随着 DNA 线圈浓度的增加形成更大尺寸的组装相匹配。此外,DNA 线圈浓度的增加会导致每个杂交结构中的 MNPs 数量增加。这项研究为 DNA-MNP 结合机制提供了新的见解,其多功能性对于其他 DNA-纳米粒子生物传感器系统的机制表征具有重要意义。