Suppr超能文献

用于扩散相关光谱中血流超快速定量的深度学习模型。

Deep learning model for ultrafast quantification of blood flow in diffuse correlation spectroscopy.

作者信息

Poon Chien-Sing, Long Feixiao, Sunar Ulas

机构信息

Department of Biomedical Engineering, Wright State University, 207 Russ Engineering Center, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA.

Beijing QED Technique Co., Ltd., Beijing, China.

出版信息

Biomed Opt Express. 2020 Sep 14;11(10):5557-5564. doi: 10.1364/BOE.402508. eCollection 2020 Oct 1.

Abstract

Diffuse correlation spectroscopy (DCS) is increasingly used in the optical imaging field to assess blood flow in humans due to its non-invasive, real-time characteristics and its ability to provide label-free, bedside monitoring of blood flow changes. Previous DCS studies have utilized a traditional curve fitting of the analytical or Monte Carlo models to extract the blood flow changes, which are computationally demanding and less accurate when the signal to noise ratio decreases. Here, we present a deep learning model that eliminates this bottleneck by solving the inverse problem more than 2300% faster, with equivalent or improved accuracy compared to the nonlinear fitting with an analytical method. The proposed deep learning inverse model will enable real-time and accurate tissue blood flow quantification with the DCS technique.

摘要

由于具有非侵入性、实时性以及能够提供无标记的床边血流变化监测等特点,扩散相关光谱技术(DCS)在光学成像领域越来越多地被用于评估人体血流。以往的DCS研究采用解析模型或蒙特卡罗模型的传统曲线拟合来提取血流变化,这种方法计算量很大,并且在信噪比降低时准确性较差。在此,我们提出一种深度学习模型,该模型通过以超过2300%的速度解决逆问题消除了这一瓶颈,与解析方法的非线性拟合相比,具有同等或更高的准确性。所提出的深度学习逆模型将能够利用DCS技术实现实时、准确的组织血流定量分析。

相似文献

1
Deep learning model for ultrafast quantification of blood flow in diffuse correlation spectroscopy.
Biomed Opt Express. 2020 Sep 14;11(10):5557-5564. doi: 10.1364/BOE.402508. eCollection 2020 Oct 1.
2
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
6
Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy.
Comput Methods Programs Biomed. 2022 Jul;222:106933. doi: 10.1016/j.cmpb.2022.106933. Epub 2022 Jun 3.
7
Pathlength-selective, interferometric diffuse correlation spectroscopy.
bioRxiv. 2025 Mar 4:2024.06.21.600096. doi: 10.1101/2024.06.21.600096.
8
Diffuse Correlation Spectroscopy Analysis Implemented on a Field Programmable Gate Array.
IEEE Access. 2019;7:122503-122512. doi: 10.1109/access.2019.2938085. Epub 2019 Aug 28.
10
Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS).
Biomed Opt Express. 2020 May 14;11(6):3071-3090. doi: 10.1364/BOE.390322. eCollection 2020 Jun 1.

引用本文的文献

2
From Neural Networks to Transformers: Achieving High and Fast Precision in Fluorescence Correlation Spectroscopy Analysis.
ACS Omega. 2025 Jun 5;10(23):25091-25101. doi: 10.1021/acsomega.5c03605. eCollection 2025 Jun 17.
3
Fast blood flow index reconstruction of diffuse correlation spectroscopy using a back-propagation-free data-driven algorithm.
Biomed Opt Express. 2025 Feb 26;16(3):1254-1269. doi: 10.1364/BOE.549363. eCollection 2025 Mar 1.
4
A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.
Biosensors (Basel). 2024 Aug 8;14(8):384. doi: 10.3390/bios14080384.
5
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
7
Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy.
Biomed Opt Express. 2023 Sep 21;14(10):5358-5375. doi: 10.1364/BOE.498693. eCollection 2023 Oct 1.
9
Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument.
Biomed Opt Express. 2022 Jun 9;13(7):3836-3853. doi: 10.1364/BOE.454346. eCollection 2022 Jul 1.
10
Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture.
Biomed Opt Express. 2021 Jun 15;12(7):4131-4146. doi: 10.1364/BOE.423777. eCollection 2021 Jul 1.

本文引用的文献

2
Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy.
J Neurosci Methods. 2020 Feb 1;331:108538. doi: 10.1016/j.jneumeth.2019.108538. Epub 2019 Nov 30.
3
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.
4
Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.
J Appl Physiol (1985). 2019 Nov 1;127(5):1328-1337. doi: 10.1152/japplphysiol.00324.2019. Epub 2019 Sep 12.
5
Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals.
Comput Biol Med. 2019 Aug;111:103355. doi: 10.1016/j.compbiomed.2019.103355. Epub 2019 Jul 10.
6
Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
Light Sci Appl. 2019 Mar 6;8:26. doi: 10.1038/s41377-019-0138-x. eCollection 2019.
7
Deep learning-based mesoscopic fluorescence molecular tomography: an study.
J Med Imaging (Bellingham). 2018 Jul;5(3):036001. doi: 10.1117/1.JMI.5.3.036001. Epub 2018 Sep 4.
9
Resting-state functional connectivity measured by diffuse correlation spectroscopy.
J Biophotonics. 2018 Feb;11(2). doi: 10.1002/jbio.201700165. Epub 2017 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验