Suppr超能文献

局灶性皮质发育不良小鼠模型致痫机制的电路机制研究。

Circuit Mechanisms Underlying Epileptogenesis in a Mouse Model of Focal Cortical Malformation.

机构信息

Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Curr Biol. 2021 Jan 25;31(2):334-345.e4. doi: 10.1016/j.cub.2020.10.029. Epub 2020 Nov 5.

Abstract

The way in which aberrant neural circuits contribute to epilepsy remains unclear. To elucidate this question, we dissected the circuit mechanisms underlying epileptogenesis using a mouse model of focal cortical malformation with spontaneous epileptiform discharges. We found that spontaneous spike-wave discharges and optogenetically induced hyperexcitable bursts in vivo were present in a cortical region distal to (>0.7 mm) freeze-lesion-induced microgyrus, instead of near the microgyrus. ChR2-assisted circuit mapping revealed ectopic inter-laminar excitatory input from infragranular layers to layers 2/3 pyramidal neurons as the key component of hyperexcitable circuitry. This hyperactivity disrupted the balance between excitation and inhibition and was more prominent in the cortical region distal to the microgyrus. Consistently, the inhibition from both parvalbumin-positive interneurons (PV) and somatostatin-positive interneurons (SOM) to pyramidal neurons were altered in a layer- and site-specific fashion. Finally, closed-loop optogenetic stimulation of SOM, but not PV, terminated spontaneous spike-wave discharges. Together, these results demonstrate the occurrence of highly site- and cell-type-specific synaptic reorganization underlying epileptic cortical circuits and provide new insights into potential treatment strategies.

摘要

异常神经回路如何导致癫痫仍不清楚。为了阐明这个问题,我们使用具有自发性癫痫样放电的局灶性皮质发育不良小鼠模型来剖析致痫形成的回路机制。我们发现,自发性尖波-慢波放电和光遗传学诱导的超兴奋性爆发存在于距冷冻损伤诱导的微脑回(>0.7mm)远端的皮质区域,而不是在微脑回附近。ChR2 辅助的回路映射显示,从颗粒下层到 2/3 层锥体神经元的异位层间兴奋性输入是超兴奋性回路的关键组成部分。这种过度活跃破坏了兴奋和抑制之间的平衡,在微脑回远端的皮质区域更为明显。一致地,锥体神经元的来自 PV 阳性中间神经元和 SOM 阳性中间神经元的抑制均以层和部位特异性的方式发生改变。最后,SOM 的闭环光遗传学刺激,但不是 PV,终止了自发性尖波-慢波放电。总之,这些结果表明,癫痫皮质回路中存在高度部位和细胞类型特异性的突触重组,并为潜在的治疗策略提供了新的见解。

相似文献

1
Circuit Mechanisms Underlying Epileptogenesis in a Mouse Model of Focal Cortical Malformation.
Curr Biol. 2021 Jan 25;31(2):334-345.e4. doi: 10.1016/j.cub.2020.10.029. Epub 2020 Nov 5.
6
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.
8
The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons.
J Neurophysiol. 2016 Oct 1;116(4):1694-1704. doi: 10.1152/jn.00744.2015. Epub 2016 Jul 13.

引用本文的文献

1
Layer-specific changes in sensory cortex across the lifespan in mice and humans.
Nat Neurosci. 2025 Aug 11. doi: 10.1038/s41593-025-02013-1.
3
Modulation of cortical representations of sensory and contextual information underlies aversive associative learning.
Cell Rep. 2024 Sep 24;43(9):114672. doi: 10.1016/j.celrep.2024.114672. Epub 2024 Aug 27.
4
Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research.
Cell Mol Neurobiol. 2024 Mar 6;44(1):27. doi: 10.1007/s10571-024-01458-5.
6
Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia.
Signal Transduct Target Ther. 2023 May 17;8(1):186. doi: 10.1038/s41392-023-01404-9.
7
Seizing After Freezing: Layer-, Site-, and Cell-Type-Specific Rewiring Mediates Epileptogenesis Following Cortical Freeze Lesion in Mouse.
Epilepsy Curr. 2021 Mar 25;21(3):199-201. doi: 10.1177/15357597211004273. eCollection 2021 May-Jun.

本文引用的文献

1
Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits.
Neuron. 2020 Feb 19;105(4):621-629.e4. doi: 10.1016/j.neuron.2019.11.011. Epub 2019 Dec 9.
2
Cortical Layer and Spectrotemporal Architecture of Epileptiform Activity in a Mouse Model of Focal Cortical Malformation.
Front Neural Circuits. 2019 Jan 22;13:2. doi: 10.3389/fncir.2019.00002. eCollection 2019.
3
Epilepsy surgery for polymicrogyria: a challenge to be undertaken.
Epileptic Disord. 2018 Oct 1;20(5):319-338. doi: 10.1684/epd.2018.1004.
4
Remodeled cortical inhibition prevents motor seizures in generalized epilepsy.
Ann Neurol. 2018 Sep;84(3):436-451. doi: 10.1002/ana.25301.
5
Circuit-specific and neuronal subcellular-wide E-I balance in cortical pyramidal cells.
Sci Rep. 2018 Mar 5;8(1):3971. doi: 10.1038/s41598-018-22314-9.
7
Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia.
Epilepsia. 2016 Oct;57(10):1581-1593. doi: 10.1111/epi.13501. Epub 2016 Aug 16.
8
Surgical management of medically refractory epilepsy in patients with polymicrogyria.
Epilepsia. 2016 Jan;57(1):151-61. doi: 10.1111/epi.13264. Epub 2015 Dec 9.
9
Genetic animal models of malformations of cortical development and epilepsy.
J Neurosci Methods. 2016 Feb 15;260:73-82. doi: 10.1016/j.jneumeth.2015.04.007. Epub 2015 Apr 21.
10
Models of cortical malformation--Chemical and physical.
J Neurosci Methods. 2016 Feb 15;260:62-72. doi: 10.1016/j.jneumeth.2015.03.034. Epub 2015 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验