Suppr超能文献

联邦学习在异构数据分布中自我配置医学目标检测的潜力。

The potential of federated learning for self-configuring medical object detection in heterogeneous data distributions.

机构信息

German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, 69120, Germany.

Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, 69120, Germany.

出版信息

Sci Rep. 2024 Oct 11;14(1):23844. doi: 10.1038/s41598-024-74577-0.

Abstract

Medical Object Detection (MOD) is a clinically relevant image processing method that locates structures of interest in radiological image data at object-level using bounding boxes. High-performing MOD models necessitate large datasets accurately reflecting the feature distribution of the corresponding problem domain. However, strict privacy regulations protecting patient data often hinder data consolidation, negatively affecting the performance and generalization of MOD models. Federated Learning (FL) offers a solution by enabling model training while the data remain at its original source institution. While existing FL solutions for medical image classification and segmentation demonstrate promising performance, FL for MOD remains largely unexplored. Motivated by this lack of technical solutions, we present an open-source, self-configuring and task-agnostic federated MOD framework. It integrates the FL framework Flower with nnDetection, a state-of-the-art MOD framework and provides several FL aggregation strategies. Furthermore, we evaluate model performance by creating simulated Independent Identically Distributed (IID) and non-IID scenarios, utilizing the publicly available datasets. Additionally, a detailed analysis of the distributions and characteristics of these datasets offers insights into how they can impact performance. Our framework's implementation demonstrates the feasibility of federated self-configuring MOD in non-IID scenarios and facilitates the development of MOD models trained on large distributed databases.

摘要

医学目标检测(MOD)是一种临床相关的图像处理方法,它使用边界框在放射影像数据中定位目标级别的感兴趣结构。高性能的 MOD 模型需要能够准确反映相应问题域特征分布的大型数据集。然而,严格的保护患者数据的隐私法规往往阻碍了数据的整合,从而对 MOD 模型的性能和泛化产生负面影响。联邦学习(FL)通过在数据保持在原始源机构的情况下进行模型训练提供了一种解决方案。虽然现有的用于医学图像分类和分割的 FL 解决方案表现出了有前景的性能,但对于 MOD 的 FL 仍然在很大程度上未被探索。受此技术解决方案缺乏的启发,我们提出了一个开源的、自配置的和与任务无关的联邦 MOD 框架。它将 FL 框架 Flower 与 nnDetection 集成在一起,nnDetection 是一个最先进的 MOD 框架,并提供了几种 FL 聚合策略。此外,我们通过创建模拟独立同分布(IID)和非 IID 场景,并利用公开可用的数据集来评估模型性能。此外,对这些数据集的分布和特征的详细分析提供了有关它们如何影响性能的见解。我们的框架的实现展示了在非 IID 场景中进行联邦自配置 MOD 的可行性,并促进了在大型分布式数据库上训练的 MOD 模型的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014a/11470020/9a6e2bd2e042/41598_2024_74577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验