Suppr超能文献

靶向促黄体生成素释放激素的氧化还原响应性交联胶束实现三阴性乳腺癌的选择性药物递送和有效化疗。

LHRH-Targeted Redox-Responsive Crosslinked Micelles Impart Selective Drug Delivery and Effective Chemotherapy in Triple-Negative Breast Cancer.

作者信息

Xiao Kai, Liu Qiangqiang, Suby Nell, Xiao Wenwu, Agrawal Rinki, Vu Michael, Zhang Hongyong, Luo Yan, Li Yuanpei, Lam Kit S

机构信息

National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China.

Department of Obstetrics and Gynecology, School of Medicine, University of California, Davis, CA, 95817, USA.

出版信息

Adv Healthc Mater. 2021 Feb;10(3):e2001196. doi: 10.1002/adhm.202001196. Epub 2020 Nov 16.

Abstract

Systemic chemotherapy is efficacious against triple-negative breast cancer (TNBC), but it is often associated with serious side effects. Here, a luteinizing hormone-releasing hormone (LHRH) receptor-targeted and tumor microenvironment-responsive nanoparticle system to selectively deliver chemotherapeutic drugs to TNBC cells, is reported. This delivery system (termed "LHRH-DCMs") contains poly(ethylene glycol) and dendritic cholic acid as a micellar carrier, reversible intra-micellar disulfide bond as a redox-responsive crosslink, and synthetic high-affinity (D-Lys)-LHRH peptide as a targeting moiety. LHRH-DCMs exhibit high drug loading efficiency, optimal particle size, good colloidal stability, and glutathione-responsive drug release. As expected, LHRH-DCMs are more efficiently internalized into human TNBC cells through receptor-mediated endocytosis, resulting in stronger cytotoxicity against these cancer cells than the non-targeted counterpart when encapsulated with paclitaxel (PTX). Furthermore, near-infrared fluorescence and magnetic resonance imaging demonstrate that LHRH-DCMs facilitate the tumor distribution and penetration of payloads in three different animal models of breast cancer, including cell line-derived xenograft (CDX), patient-derived xenograft (PDX), and transgenic mammary carcinoma. Finally, in vivo therapeutic studies show that PTX-LHRH-DCMs outperform both the corresponding nontargeted PTX-DCMs and the current clinical formulation (Taxol) in an orthotopic TNBC model. These results provide new insights into approaches for precise drug delivery of TNBC.

摘要

全身化疗对三阴性乳腺癌(TNBC)有效,但常伴有严重副作用。在此,报道了一种靶向黄体生成素释放激素(LHRH)受体且对肿瘤微环境有响应的纳米颗粒系统,用于将化疗药物选择性地递送至TNBC细胞。该递送系统(称为“LHRH-DCMs”)包含聚乙二醇和树枝状胆酸作为胶束载体,胶束内的可逆二硫键作为氧化还原响应交联剂,以及合成的高亲和力(D-赖氨酸)-LHRH肽作为靶向部分。LHRH-DCMs表现出高载药效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs通过受体介导的内吞作用更有效地内化到人类TNBC细胞中,当与紫杉醇(PTX)包封时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和磁共振成像表明,LHRH-DCMs促进了在三种不同乳腺癌动物模型(包括细胞系来源的异种移植瘤(CDX)、患者来源的异种移植瘤(PDX)和转基因乳腺癌)中有效载荷的肿瘤分布和渗透。最后,体内治疗研究表明,在原位TNBC模型中,PTX-LHRH-DCMs的性能优于相应的非靶向PTX-DCMs和当前的临床制剂(紫杉醇)。这些结果为TNBC精确给药方法提供了新的见解。

相似文献

2
Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery.
Biomaterials. 2011 Sep;32(27):6633-45. doi: 10.1016/j.biomaterials.2011.05.050. Epub 2011 Jun 11.
4
Tumor-Targeting Micelles Based on Linear-Dendritic PEG-PTX Conjugate for Triple Negative Breast Cancer Therapy.
Mol Pharm. 2017 Oct 2;14(10):3409-3421. doi: 10.1021/acs.molpharmaceut.7b00430. Epub 2017 Aug 30.
10
Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy.
Sci China Life Sci. 2018 Apr;61(4):436-447. doi: 10.1007/s11427-017-9274-9. Epub 2018 Mar 19.

引用本文的文献

2
Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer.
Mater Today Bio. 2024 Nov 23;29:101358. doi: 10.1016/j.mtbio.2024.101358. eCollection 2024 Dec.
4
Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges.
Int J Nanomedicine. 2024 Feb 23;19:1867-1886. doi: 10.2147/IJN.S442768. eCollection 2024.
5
Nanotechnology Applications in Breast Cancer Immunotherapy.
Small. 2024 Oct;20(41):e2308639. doi: 10.1002/smll.202308639. Epub 2023 Dec 21.
6
Benefits of using polymeric nanoparticles in breast cancer treatment: a systematic review.
3 Biotech. 2023 Nov;13(11):357. doi: 10.1007/s13205-023-03779-6. Epub 2023 Oct 8.
7
Transformable nanoparticles to bypass biological barriers in cancer treatment.
Nanoscale Adv. 2022 Sep 14;4(21):4470-4480. doi: 10.1039/d2na00485b. eCollection 2022 Oct 25.
8
9
Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy.
Cancers (Basel). 2022 May 17;14(10):2473. doi: 10.3390/cancers14102473.

本文引用的文献

1
Medical and Dietary Uses of N-Acetylcysteine.
Antioxidants (Basel). 2019 Apr 28;8(5):111. doi: 10.3390/antiox8050111.
2
Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy.
Nano Lett. 2019 Feb 13;19(2):658-665. doi: 10.1021/acs.nanolett.8b03043. Epub 2018 Oct 23.
3
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
7
A Phase II Trial of AEZS-108 in Castration- and Taxane-Resistant Prostate Cancer.
Clin Genitourin Cancer. 2017 Dec;15(6):742-749. doi: 10.1016/j.clgc.2017.06.002. Epub 2017 Jun 8.
9
LHRH-Targeted Drug Delivery Systems for Cancer Therapy.
Mini Rev Med Chem. 2017;17(3):258-267. doi: 10.2174/1389557516666161013111155.
10
The fate of chemoresistance in triple negative breast cancer (TNBC).
BBA Clin. 2015 Mar 12;3:257-75. doi: 10.1016/j.bbacli.2015.03.003. eCollection 2015 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验