Environment and Climate Change Canada, Burlington, Ontario, Canada.
AES Armitage Environmental Sciences, Ottawa, Ontario, Canada.
Environ Toxicol Chem. 2021 Mar;40(3):631-657. doi: 10.1002/etc.4935. Epub 2021 Jan 29.
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
我们综合了目前对人类和野生动物接触多氟和全氟烷基物质(PFAS)的程度和评估方法的认识。大多数人类暴露评估都集中在 2 到 5 种传统 PFAS 上,而野生动物评估通常仅限于特定的 PFAS(最多约 30 种物质)。然而,化学品生产的转变正在迅速发生,用于检测 PFAS 的靶向方法并没有跟上这些变化的步伐。因此,总氟测量方法加上使用高分辨率质谱进行可疑筛选,正在成为 PFAS 暴露评估的重要工具。这些方法使研究人员能够更好地了解降解为末端全氟烷基酸的前体化合物的贡献。现有数据表明,饮食是某些 PFAS 的主要人类暴露途径,但人群和 PFAS 化合物之间存在很大的差异。需要更多关于暴露介质中总氟和未识别有机氟部分的数据。饮用水已被确定为受污染社区中主要的暴露源。随着供水的修复,对于一般人群来说,灰尘、个人护理产品、室内环境和其他来源的暴露可能更为重要。暴露评估的一个主要挑战是缺乏具有统计学代表性的人口调查。对于野生动物,PFAS 和中性亲脂性有机化合物的生物积累过程有很大的不同,这促使人们重新评估传统的生物积累指标。有证据表明,磷脂和蛋白质对于 PFAS 的组织分配和积累都很重要。正在开发用于 PFAS 生物积累的新的机制模型,这将有助于野生动物风险评估。环境毒理化学 2021;40:631-657。版权所有 2020 SETAC。