Suppr超能文献

基于七核受体的乳腺癌预后标志物。

A seven-nuclear receptor-based prognostic signature in breast cancer.

机构信息

Ambuiatory Surgery Treatment Department, Cangzhou Central Hospital, Cangzhou, 061001, Hebei Province, China.

Department of Diagnostic Imaging, Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, Hebei, China.

出版信息

Clin Transl Oncol. 2021 Jul;23(7):1292-1303. doi: 10.1007/s12094-020-02517-1. Epub 2020 Nov 18.

Abstract

BACKGROUND

Breast cancer (BRCA) is a malignant cancer that threatened the life of female with unsatisfactory prognosis. The aim of this study was to identify prognostic nuclear receptors (NRs) signature of BRCA.

METHODS

BRCA patient samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Consensus clustering analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed to evaluate, select NRs as prognostic factors and build Risk Score model. GSEA analysis was explored to check signaling differences between High- and Low-Risk group. Nomogram model basing on age and Risk Score was established to predict the 1-, 3- and 5-year survival. Model performance was assessed by a time-dependent receiver operating characteristic (ROC) curve and calibration plot. CIBERSORT, ESTIMATE and TIMER algorithm were introduced to evaluate the immune landscape.

RESULTS

NR3C1, NR4A3, THRA, RXRG, NR2F6, NR1D2 and RORB were optimized as a prognostic signature for BRCA. This seven-NR-based Risk Score could effectively predict overall survival status. The area under the curve (AUC) of 1-, 3- and 5-year overall survival are 0.702, 0.734 and 0.722 in TCGA training cohort, and 0.630, 0.721 and 0.823 in GEO validation cohort, respectively. Calibration plot demonstrated satisfactory agreement between predictive and observed outcomes. Nomogram model worked well on predicting survival probabilities. Multiple cancer-related pathways were highly enriched in High-Risk group. High- and Low-Risk groups showed significant differed immune cell infiltration. There exists an obvious connection between Risk Score and immune checkpoints LAG3, PD1 and TIM3.

CONCLUSION

The seven-NR-based Risk Score represents a promising signature for estimating overall survival in patients with BRCA, and is correlated with the immune microenvironment.

摘要

背景

乳腺癌(BRCA)是一种恶性癌症,对女性的生命构成威胁,预后不理想。本研究旨在鉴定 BRCA 的预后核受体(NR)特征。

方法

从癌症基因组图谱(TCGA)和基因表达综合(GEO)数据库中收集 BRCA 患者样本。进行共识聚类分析、单变量 Cox 回归分析和最小绝对值收缩和选择算子(LASSO)Cox 回归分析,以评估、选择 NR 作为预后因素,并构建风险评分模型。进行 GSEA 分析以检查高风险和低风险组之间的信号差异。基于年龄和风险评分建立列线图模型以预测 1、3 和 5 年生存率。通过时间依赖性接收器操作特征(ROC)曲线和校准图评估模型性能。使用 CIBERSORT、ESTIMATE 和 TIMER 算法评估免疫景观。

结果

NR3C1、NR4A3、THRA、RXRG、NR2F6、NR1D2 和 RORB 被优化为 BRCA 的预后标志物。该基于七个 NR 的风险评分可有效预测总体生存状态。TCGA 训练队列中 1、3 和 5 年总生存率的曲线下面积(AUC)分别为 0.702、0.734 和 0.722,GEO 验证队列中分别为 0.630、0.721 和 0.823。校准图表明预测结果与观察结果之间具有良好的一致性。列线图模型在预测生存概率方面表现良好。高风险组中存在多个癌症相关途径的高度富集。高风险组和低风险组之间的免疫细胞浸润存在显著差异。风险评分与免疫检查点 LAG3、PD1 和 TIM3 之间存在明显联系。

结论

基于七个 NR 的风险评分代表了一种有前途的用于估计 BRCA 患者总体生存率的标志物,并且与免疫微环境相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验