Suppr超能文献

使用 StarDist 和 TrackMate 进行自动细胞跟踪。

Automated cell tracking using StarDist and TrackMate.

机构信息

Laboratory of Biophysics, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.

Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.

出版信息

F1000Res. 2020 Oct 28;9:1279. doi: 10.12688/f1000research.27019.1. eCollection 2020.

Abstract

The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images.

摘要

细胞迁移的能力是胚胎发育、组织稳态、免疫监视和伤口愈合等基本生理过程的基础。因此,过去 50 年来,控制细胞运动的机制一直受到密切关注。这种研究的主要工具之一是活细胞定量成像,研究人员通过随时间对细胞进行成像来研究它们的迁移,并通过使用记录的图像对其进行跟踪来对其动力学进行定量分析。尽管存在计算工具,但由于难以设置稳健的自动细胞跟踪和大规模分析,手动跟踪在研究人员中仍然广泛使用。在这里,我们提供了一个详细的分析流程,说明了如何将深度学习网络 StarDist 与流行的跟踪软件 TrackMate 结合使用,以执行 2D 自动细胞跟踪并提供完全定量的读数。我们提出的方案与荧光和宽场图像兼容。它只需要免费提供和开源软件(ZeroCostDL4Mic 和 Fiji),并且不需要用户具备任何编码知识,使其成为该领域的一种通用且强大的工具。我们通过使用荧光和明场图像自动跟踪癌细胞和 T 细胞来证明该流程的可用性。重要的是,我们以补充信息的形式提供了一个详细的分步协议,以允许研究人员用他们的图像来实现它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验