Suppr超能文献

天气能否帮助我们度过 COVID-19 大流行:使用机器学习来衡量推特用户的看法。

Whether the weather will help us weather the COVID-19 pandemic: Using machine learning to measure twitter users' perceptions.

机构信息

MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA, USA; The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA, USA; Indian Institute of Technology Delhi, New Delhi, Delhi, India.

出版信息

Int J Med Inform. 2021 Jan;145:104340. doi: 10.1016/j.ijmedinf.2020.104340. Epub 2020 Nov 10.

Abstract

OBJECTIVE

The potential ability for weather to affect SARS-CoV-2 transmission has been an area of controversial discussion during the COVID-19 pandemic. Individuals' perceptions of the impact of weather can inform their adherence to public health guidelines; however, there is no measure of their perceptions. We quantified Twitter users' perceptions of the effect of weather and analyzed how they evolved with respect to real-world events and time.

MATERIALS AND METHODS

We collected 166,005 English tweets posted between January 23 and June 22, 2020 and employed machine learning/natural language processing techniques to filter for relevant tweets, classify them by the type of effect they claimed, and identify topics of discussion.

RESULTS

We identified 28,555 relevant tweets and estimate that 40.4 % indicate uncertainty about weather's impact, 33.5 % indicate no effect, and 26.1 % indicate some effect. We tracked changes in these proportions over time. Topic modeling revealed major latent areas of discussion.

DISCUSSION

There is no consensus among the public for weather's potential impact. Earlier months were characterized by tweets that were uncertain of weather's effect or claimed no effect; later, the portion of tweets claiming some effect of weather increased. Tweets claiming no effect of weather comprised the largest class by June. Major topics of discussion included comparisons to influenza's seasonality, President Trump's comments on weather's effect, and social distancing.

CONCLUSION

We exhibit a research approach that is effective in measuring population perceptions and identifying misconceptions, which can inform public health communications.

摘要

目的

在 COVID-19 大流行期间,天气是否有可能影响 SARS-CoV-2 传播一直是一个备受争议的讨论领域。个人对天气影响的看法可以影响他们对公共卫生指南的遵守程度;但是,目前还没有衡量他们看法的方法。我们量化了 Twitter 用户对天气影响的看法,并分析了它们如何随着现实世界事件和时间的变化而演变。

材料与方法

我们收集了 2020 年 1 月 23 日至 6 月 22 日期间发布的 166,005 条英文推文,并采用机器学习/自然语言处理技术对相关推文进行过滤,按其所声称的影响类型对其进行分类,并识别讨论的主题。

结果

我们确定了 28,555 条相关推文,并估计其中 40.4%表示对天气影响的不确定性,33.5%表示没有影响,26.1%表示有一定影响。我们跟踪了这些比例随时间的变化。主题建模揭示了主要的讨论领域。

讨论

公众对天气的潜在影响没有共识。早期的几个月的推文特征是不确定天气的影响或声称没有影响;后来,声称天气有一定影响的推文比例增加。到 6 月,声称天气没有影响的推文构成了最大的类别。主要的讨论主题包括与流感季节性的比较,特朗普总统关于天气影响的评论以及社交距离。

结论

我们展示了一种有效的研究方法,可以衡量公众的看法并识别误解,这可以为公共卫生沟通提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2564/7654388/5cfc8d5e8c1e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验