Rosłoń I E, Dolleman R J, Licona H, Lee M, Šiškins M, Lebius H, Madauß L, Schleberger M, Alijani F, van der Zant H S J, Steeneken P G
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands.
Department of Precision and Microsystem Engineering, Faculty 3mE, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
Nat Commun. 2020 Nov 27;11(1):6025. doi: 10.1038/s41467-020-19893-5.
Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications. Here, graphene membranes are used to pump gases through nanopores using optothermal forces, enabling the study of gas flow through nanopores at frequencies above 100 kHz. At these frequencies, the motion of graphene is closely linked to the dynamic gas flow through the nanopore and can thus be used to study gas permeation at the nanoscale. By monitoring the time delay between the actuation force and the membrane mechanical motion, the permeation time-constants of various gases through pores with diameters from 10-400 nm are shown to be significantly different. Thus, a method is presented for differentiating gases based on their molecular mass and for studying gas flow mechanisms. The presented microscopic effusion-based gas sensing methodology provides a nanomechanical alternative for large-scale mass-spectrometry and optical spectrometry based gas characterisation methods.
多孔、原子级薄的石墨烯膜在过滤和筛分应用中具有有趣的特性。在此,利用光热力通过纳米孔泵送气体来使用石墨烯膜,从而能够研究频率高于100 kHz时气体通过纳米孔的流动情况。在这些频率下,石墨烯的运动与通过纳米孔的动态气体流动紧密相关,因此可用于研究纳米尺度下的气体渗透。通过监测驱动力与膜机械运动之间的时间延迟,结果表明各种气体通过直径为10 - 400 nm的孔的渗透时间常数存在显著差异。因此,提出了一种基于气体分子量区分气体并研究气体流动机制的方法。所提出的基于微观泻流的气体传感方法为基于大规模质谱和光谱分析的气体表征方法提供了一种纳米机械替代方案。