Suppr超能文献

用于早期预测韩国和德国 COVID-19 病毒传播的递归分岔模型。

A recursive bifurcation model for early forecasting of COVID-19 virus spread in South Korea and Germany.

机构信息

Dartmouth College, Hanover, NH, USA.

出版信息

Sci Rep. 2020 Nov 27;10(1):20776. doi: 10.1038/s41598-020-77457-5.

Abstract

Early forecasting of COVID-19 virus spread is crucial to decision making on lockdown or closure of cities, states or countries. In this paper we design a recursive bifurcation model for analyzing COVID-19 virus spread in different countries. The bifurcation facilitates recursive processing of infected population through linear least-squares fitting. In addition, a nonlinear least-squares fitting procedure is utilized to predict the future values of infected populations. Numerical results on the data from two countries (South Korea and Germany) indicate the effectiveness of our approach, compared to a logistic growth model and a Richards model in the context of early forecast. The limitation of our approach and future research are also mentioned at the end of this paper.

摘要

早期预测 COVID-19 病毒传播对于决定封锁或关闭城市、州或国家至关重要。在本文中,我们设计了一个递归分岔模型来分析不同国家的 COVID-19 病毒传播。分岔通过线性最小二乘拟合促进感染人群的递归处理。此外,还利用非线性最小二乘拟合程序来预测感染人群的未来值。对来自两个国家(韩国和德国)的数据进行的数值结果表明,与逻辑增长模型和 Richards 模型相比,我们的方法在早期预测方面是有效的。本文最后还提到了我们方法的局限性和未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4d/7695842/d4472e2dc76f/41598_2020_77457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验