Raza Ali, Ahmadian Ali, Rafiq Muhammad, Salahshour Soheil, Naveed Muhammad, Ferrara Massimiliano, Soori Atif Hassan
Department of Mathematics, National College of Business Administration and Economics, Lahore, Pakistan.
Institute of IR 4.0, The National University of Malaysia, 43600 UKM Bangi, Malaysia.
Adv Differ Equ. 2020;2020(1):663. doi: 10.1186/s13662-020-03116-8. Epub 2020 Nov 25.
In this manuscript, we investigate a nonlinear delayed model to study the dynamics of human-immunodeficiency-virus in the population. For analysis, we find the equilibria of a susceptible-infectious-immune system with a delay term. The well-established tools such as the Routh-Hurwitz criterion, Volterra-Lyapunov function, and Lasalle invariance principle are presented to investigate the stability of the model. The reproduction number and sensitivity of parameters are investigated. If the delay tactics are decreased, then the disease is endemic. On the other hand, if the delay tactics are increased then the disease is controlled in the population. The effect of the delay tactics with subpopulations is investigated. More precisely, all parameters are dependent on delay terms. In the end, to give the strength to a theoretical analysis of the model, a computer simulation is presented.
在本手稿中,我们研究了一个非线性延迟模型,以研究人群中人类免疫缺陷病毒的动态变化。为了进行分析,我们找到了一个带有延迟项的易感-感染-免疫模型的平衡点。我们运用了如劳斯-赫尔维茨判据、伏尔泰拉-李雅普诺夫函数和拉萨尔不变性原理等成熟工具来研究该模型的稳定性。我们还研究了再生数和参数的敏感性。如果延迟策略降低,那么疾病将呈地方性流行。另一方面,如果延迟策略增加,那么疾病在人群中将得到控制。我们研究了延迟策略对亚群的影响。更确切地说,所有参数都依赖于延迟项。最后,为了增强对该模型的理论分析力度,我们给出了一个计算机模拟。