755 College Road East, Digital Technology and Innovation Division, Siemens Healthineers, Princeton, NJ, 08540.
2111 East 96th St/NE-6, Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, OH, 44195.
Lancet Digit Health. 2019 Jul;1(3):e136-e147. doi: 10.1016/S2589-7500(19)30058-5. Epub 2019 Jun 27.
Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose.
We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be <5%.
Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone ( = <0.001 and <0.001, respectively). Deep Profiler performed well in an external study population ( = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). Gray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases.
Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.
放疗在临床实践中仍持续采用统一的方案,而不考虑肿瘤的个体特征。为了使放疗更加精确,我们利用肺癌 CT 影像特征空间来识别预测治疗失败的放射敏感性参数,从而指导个体化放疗剂量。
我们使用了一个基于队列的癌症患者数据库,共纳入 849 例接受立体定向放疗的肺癌患者。我们将患者治疗前的 CT 影像输入到一个多任务深度学习网络(Deep Profiler)中,以生成一个图像指纹,该指纹主要预测时间依赖性治疗结局,同时也近似于经典的放射组学特征。我们在一个独立的研究人群(n=95)中验证了我们的发现。将 Deep Profiler 与临床变量相结合,推导出 Gray,这是一种个体化剂量,可估计治疗失败的概率<5%。
高 Deep Profiler 评分患者的放疗失败率明显高于低评分患者。3 年局部累积失败率分别为 20.3%(95%CI:16.0-24.9)和 5.7%(95%CI:3.5-8.8)。Deep Profiler 独立预测了局部失败(风险比 1.65,95%CI:1.02-2.66,p=0.04)。包含 Deep Profiler 和临床变量的模型预测治疗失败的一致性指数为 0.72(95%CI:0.67-0.77),明显优于单纯的经典放射组学或临床变量(p<0.001 和 p<0.001)。Deep Profiler 在外部研究人群(n=95)中表现良好,能够准确预测不同临床环境和 CT 扫描仪类型下的治疗失败(一致性指数=0.77 [95%CI:0.69-0.92])。Gray 剂量范围较宽(21.1-277 Gy,BED),提示有 23.3%的患者需要降低剂量,并且在大多数情况下可以安全地给予治疗。
我们的结果表明,存在对放疗有不同敏感性的影像学亚群。本文提出的基于图像的深度学习框架是首次利用医学影像进行个体化放疗剂量的机会。