Suppr超能文献

基于图像的深度学习个体化放疗剂量框架。

An image-based deep learning framework for individualizing radiotherapy dose.

机构信息

755 College Road East, Digital Technology and Innovation Division, Siemens Healthineers, Princeton, NJ, 08540.

2111 East 96th St/NE-6, Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, OH, 44195.

出版信息

Lancet Digit Health. 2019 Jul;1(3):e136-e147. doi: 10.1016/S2589-7500(19)30058-5. Epub 2019 Jun 27.

Abstract

BACKGROUND

Radiotherapy continues to be delivered uniformly without consideration of individual tumor characteristics. To advance toward more precise treatments in radiotherapy, we queried the lung computed tomography (CT)-derived feature space to identify radiation sensitivity parameters that can predict treatment failure and hence guide the individualization of radiotherapy dose.

METHODS

We used a cohort-based registry of 849 patients with cancer in the lung treated with high dose radiotherapy using stereotactic body radiotherapy. We input pre-therapy lung CT images into a multi-task deep neural network, Deep Profiler, to generate an image fingerprint that primarily predicts time to event treatment outcomes and secondarily approximates classical radiomic features. We validated our findings in an independent study population ( = 95). Deep Profiler was combined with clinical variables to derive Gray, an individualized dose that estimates treatment failure probability to be <5%.

FINDINGS

Radiation treatments in patients with high Deep Profiler scores fail at a significantly higher rate than in those with low scores. The 3-year cumulative incidences of local failure were 20.3% (95% CI: 16.0-24.9) and 5.7% (95% CI: 3.5-8.8), respectively. Deep Profiler independently predicted local failure (hazard ratio 1.65, 95% 1.02-2.66, = 0.04). Models that included Deep Profiler and clinical variables predicted treatment failures with a concordance index of 0.72 (95% CI: 0.67-0.77), a significant improvement compared to classical radiomics or clinical variables alone ( = <0.001 and <0.001, respectively). Deep Profiler performed well in an external study population ( = 95), accurately predicting treatment failures across diverse clinical settings and CT scanner types (concordance index = 0.77 [95% CI: 0.69-0.92]). Gray had a wide dose range (21.1-277 Gy, BED), suggested dose reductions in 23.3% of patients and can be safely delivered in the majority of cases.

INTERPRETATION

Our results indicate that there are image-distinct subpopulations that have differential sensitivity to radiotherapy. The image-based deep learning framework proposed herein is the first opportunity to use medical images to individualize radiotherapy dose.

摘要

背景

放疗在临床实践中仍持续采用统一的方案,而不考虑肿瘤的个体特征。为了使放疗更加精确,我们利用肺癌 CT 影像特征空间来识别预测治疗失败的放射敏感性参数,从而指导个体化放疗剂量。

方法

我们使用了一个基于队列的癌症患者数据库,共纳入 849 例接受立体定向放疗的肺癌患者。我们将患者治疗前的 CT 影像输入到一个多任务深度学习网络(Deep Profiler)中,以生成一个图像指纹,该指纹主要预测时间依赖性治疗结局,同时也近似于经典的放射组学特征。我们在一个独立的研究人群(n=95)中验证了我们的发现。将 Deep Profiler 与临床变量相结合,推导出 Gray,这是一种个体化剂量,可估计治疗失败的概率<5%。

结果

高 Deep Profiler 评分患者的放疗失败率明显高于低评分患者。3 年局部累积失败率分别为 20.3%(95%CI:16.0-24.9)和 5.7%(95%CI:3.5-8.8)。Deep Profiler 独立预测了局部失败(风险比 1.65,95%CI:1.02-2.66,p=0.04)。包含 Deep Profiler 和临床变量的模型预测治疗失败的一致性指数为 0.72(95%CI:0.67-0.77),明显优于单纯的经典放射组学或临床变量(p<0.001 和 p<0.001)。Deep Profiler 在外部研究人群(n=95)中表现良好,能够准确预测不同临床环境和 CT 扫描仪类型下的治疗失败(一致性指数=0.77 [95%CI:0.69-0.92])。Gray 剂量范围较宽(21.1-277 Gy,BED),提示有 23.3%的患者需要降低剂量,并且在大多数情况下可以安全地给予治疗。

结论

我们的结果表明,存在对放疗有不同敏感性的影像学亚群。本文提出的基于图像的深度学习框架是首次利用医学影像进行个体化放疗剂量的机会。

相似文献

1
An image-based deep learning framework for individualizing radiotherapy dose.
Lancet Digit Health. 2019 Jul;1(3):e136-e147. doi: 10.1016/S2589-7500(19)30058-5. Epub 2019 Jun 27.
7
Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer.
Radiother Oncol. 2012 Feb;102(2):239-45. doi: 10.1016/j.radonc.2011.10.014. Epub 2011 Nov 16.
9
CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.
Radiother Oncol. 2016 Aug;120(2):258-66. doi: 10.1016/j.radonc.2016.05.024. Epub 2016 Jun 10.

引用本文的文献

1
The Impact of Artificial Intelligence on Lung Cancer Diagnosis and Personalized Treatment.
Int J Mol Sci. 2025 Aug 31;26(17):8472. doi: 10.3390/ijms26178472.
2
Artificial intelligence-powered innovations in radiotherapy: boosting efficiency and efficacy.
Med Rev (2021). 2025 Feb 28;5(4):348-351. doi: 10.1515/mr-2025-0007. eCollection 2025 Aug.
4
Digital twin manifesto for the pathology laboratory.
Diagn Pathol. 2025 Jul 17;20(1):84. doi: 10.1186/s13000-025-01679-2.
5
Smart Healthcare: The Role of Digital Health in Modern Medicine.
Health Care Sci. 2025 Jun 1;4(3):179-187. doi: 10.1002/hcs2.70019. eCollection 2025 Jun.
6
New Approaches in Radiotherapy.
Cancers (Basel). 2025 Jun 13;17(12):1980. doi: 10.3390/cancers17121980.
7
Deep learning in nuclear medicine: from imaging to therapy.
Ann Nucl Med. 2025 May;39(5):424-440. doi: 10.1007/s12149-025-02031-w. Epub 2025 Mar 13.
8
Convergence of evolving artificial intelligence and machine learning techniques in precision oncology.
NPJ Digit Med. 2025 Jan 31;8(1):75. doi: 10.1038/s41746-025-01471-y.
9
Artificial intelligence in lung cancer: current applications, future perspectives, and challenges.
Front Oncol. 2024 Dec 23;14:1486310. doi: 10.3389/fonc.2024.1486310. eCollection 2024.
10
Robust and interpretable deep learning system for prognostic stratification of extranodal natural killer/T-cell lymphoma.
Eur J Nucl Med Mol Imaging. 2025 Apr;52(5):1739-1750. doi: 10.1007/s00259-024-07024-x. Epub 2024 Dec 23.

本文引用的文献

3
Adjuvant Systemic Therapy in Patients With Early-Stage NSCLC Treated With Stereotactic Body Radiation Therapy.
J Thorac Oncol. 2019 Mar;14(3):475-481. doi: 10.1016/j.jtho.2018.11.018. Epub 2018 Nov 29.
4
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
PLoS Med. 2018 Nov 30;15(11):e1002711. doi: 10.1371/journal.pmed.1002711. eCollection 2018 Nov.
5
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.
Nat Med. 2018 Oct;24(10):1559-1567. doi: 10.1038/s41591-018-0177-5. Epub 2018 Sep 17.
6
A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1074-1082. doi: 10.1016/j.ijrobp.2018.08.032. Epub 2018 Aug 28.
7
Highly accurate model for prediction of lung nodule malignancy with CT scans.
Sci Rep. 2018 Jun 18;8(1):9286. doi: 10.1038/s41598-018-27569-w.
10
Histology significantly affects recurrence and survival following SBRT for early stage non-small cell lung cancer.
Lung Cancer. 2018 Apr;118:20-26. doi: 10.1016/j.lungcan.2018.01.021. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验