Suppr超能文献

CT 纹理分析在纵隔淋巴结病变中的应用:结合基于超声的弹性参数,鉴别结节病与小细胞肺癌淋巴结转移。

CT texture analysis of mediastinal lymphadenopathy: Combining with US-based elastographic parameter and discrimination between sarcoidosis and lymph node metastasis from small cell lung cancer.

机构信息

Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.

Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.

出版信息

PLoS One. 2020 Dec 2;15(12):e0243181. doi: 10.1371/journal.pone.0243181. eCollection 2020.

Abstract

OBJECTIVES

To investigate the potential of computed tomography (CT)-based texture analysis and elastographic data provided by endobronchial ultrasonography (EBUS) for differentiating the mediastinal lymphadenopathy by sarcoidosis and small cell lung cancer (SCLC) metastasis.

METHODS

Sixteen patients with sarcoidosis and 14 with SCLC were enrolled. On CT images showing the largest mediastinal lymph node, a fixed region of interest was drawn on the node, and texture features were automatically measured. Among the 30 patients, 19 (12 sarcoidosis and 7 SCLC) underwent endobronchial ultrasound transbronchial needle aspiration, and the fat-to-lesion strain ratio (FLR) was recorded. Texture features and FLRs were compared between the 2 patient groups. Logistic regression analysis was performed to evaluate the diagnostic accuracy of these measurements.

RESULTS

Of the 31 texture features, the differences between 11 texture features of CT ROIs in the patients with sarcoidosis versus patients with SCLC were significant. Among them, the grey-level run length matrix with high gray-level run emphasis (GLRLM-HGRE) showed the greatest difference (P<0.01). Differences between FLRs were significant (P<0.05). Logistic regression analysis together with receiver operating characteristic curve analysis demonstrated that the FLR combined with the GLRLM-HGRE showed a high diagnostic accuracy (100% sensitivity, 92% specificity, 0.988 area under the curve) for discriminating between sarcoidosis and SCLC.

CONCLUSION

Texture analysis, particularly combined with the FLR, is useful for discriminating between mediastinal lymphadenopathy caused by sarcoidosis from that caused by metastasis from SCLC.

摘要

目的

研究基于计算机断层扫描(CT)的纹理分析和经支气管超声内镜(EBUS)弹性成像数据在区分结节病和小细胞肺癌(SCLC)转移引起的纵隔淋巴结病变中的应用潜力。

方法

纳入 16 例结节病患者和 14 例 SCLC 患者。在显示最大纵隔淋巴结的 CT 图像上,在淋巴结上画出固定的感兴趣区(ROI),并自动测量纹理特征。在 30 例患者中,有 19 例(12 例结节病和 7 例 SCLC)进行了经支气管超声内镜引导下经支气管针吸活检术(EBUS-TBNA),并记录了脂肪与病变应变比(FLR)。比较了两组患者的纹理特征和 FLR。采用逻辑回归分析评估这些测量的诊断准确性。

结果

在 31 个纹理特征中,有 11 个 CT ROI 纹理特征在结节病患者与 SCLC 患者之间存在显著差异。其中,灰度级运行长度矩阵中高灰度级运行强调(GLRLM-HGRE)的差异最大(P<0.01)。FLR 之间也存在显著差异(P<0.05)。逻辑回归分析结合受试者工作特征曲线分析表明,FLR 结合 GLRLM-HGRE 对区分结节病和 SCLC 引起的纵隔淋巴结病变具有较高的诊断准确性(灵敏度 100%,特异度 92%,曲线下面积 0.988)。

结论

纹理分析,特别是与 FLR 相结合,有助于区分结节病和 SCLC 转移引起的纵隔淋巴结病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65a4/7710054/81fca954e97f/pone.0243181.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验