Suppr超能文献

基于近似熵-均方误差和稀疏约束正交匹配追踪的大地电磁信号噪声识别与分离

Magnetotelluric Signal-Noise Identification and Separation Based on ApEn-MSE and StOMP.

作者信息

Li Jin, Cai Jin, Peng Yiqun, Zhang Xian, Zhou Cong, Li Guang, Tang Jingtian

机构信息

Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.

出版信息

Entropy (Basel). 2019 Feb 19;21(2):197. doi: 10.3390/e21020197.

Abstract

Natural magnetotelluric signals are extremely weak and susceptible to various types of noise pollution. To obtain more useful magnetotelluric data for further analysis and research, effective signal-noise identification and separation is critical. To this end, we propose a novel method of magnetotelluric signal-noise identification and separation based on ApEn-MSE and Stagewise orthogonal matching pursuit (StOMP). Parameters with good irregularity metrics are introduced: Approximate entropy (ApEn) and multiscale entropy (MSE), in combination with k-means clustering, can be used to accurately identify the data segments that are disturbed by noise. Stagewise orthogonal matching pursuit (StOMP) is used for noise suppression only in data segments identified as containing strong interference. Finally, we reconstructed the signal. The results show that the proposed method can better preserve the low-frequency slow-change information of the magnetotelluric signal compared with just using StOMP, thus avoiding the loss of useful information due to over-processing, while producing a smoother and more continuous apparent resistivity curve. Moreover, the results more accurately reflect the inherent electrical structure information of the measured site itself.

摘要

天然大地电磁信号极其微弱,且易受各类噪声污染影响。为获取更有用的大地电磁数据以供进一步分析和研究,有效的信噪识别与分离至关重要。为此,我们提出一种基于近似熵(ApEn)-多尺度熵(MSE)和逐段正交匹配追踪(StOMP)的新型大地电磁信号-噪声识别与分离方法。引入具有良好不规则性度量的参数:近似熵(ApEn)和多尺度熵(MSE),结合k均值聚类,可用于准确识别受噪声干扰的数据段。逐段正交匹配追踪(StOMP)仅用于对识别为包含强干扰的数据段进行噪声抑制。最后,我们对信号进行了重构。结果表明,与仅使用StOMP相比,该方法能更好地保留大地电磁信号的低频慢变信息,从而避免因过度处理导致有用信息丢失,同时生成更平滑、更连续的视电阻率曲线。此外,结果更准确地反映了测量站点本身的固有电性结构信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb1/7514680/617f1a514ca0/entropy-21-00197-g001a.jpg

相似文献

1
Magnetotelluric Signal-Noise Identification and Separation Based on ApEn-MSE and StOMP.
Entropy (Basel). 2019 Feb 19;21(2):197. doi: 10.3390/e21020197.
3
Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it?
PLoS Comput Biol. 2020 May 11;16(5):e1007885. doi: 10.1371/journal.pcbi.1007885. eCollection 2020 May.
4
The multiscale entropy: Guidelines for use and interpretation in brain signal analysis.
J Neurosci Methods. 2016 Nov 1;273:175-190. doi: 10.1016/j.jneumeth.2016.09.004. Epub 2016 Sep 14.
6
Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals.
IEEE Trans Biomed Eng. 2017 Dec;64(12):2872-2879. doi: 10.1109/TBME.2017.2679136. Epub 2017 Mar 8.
7
Comparative study of approximate entropy and sample entropy robustness to spikes.
Artif Intell Med. 2011 Oct;53(2):97-106. doi: 10.1016/j.artmed.2011.06.007. Epub 2011 Aug 10.
8
Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.
Ann Biomed Eng. 2010 Apr;38(4):1483-96. doi: 10.1007/s10439-010-9933-5. Epub 2010 Jan 23.
9
A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm.
Sensors (Basel). 2018 Sep 30;18(10):3289. doi: 10.3390/s18103289.

本文引用的文献

1
Sample Entropy of sEMG Signals at Different Stages of Rectal Cancer Treatment.
Entropy (Basel). 2018 Nov 9;20(11):863. doi: 10.3390/e20110863.
2
On the Geodesic Distance in Shapes -means Clustering.
Entropy (Basel). 2018 Aug 29;20(9):647. doi: 10.3390/e20090647.
4
Sample Entropy of the Heart Rate Reflects Properties of the System Organization of Behaviour.
Entropy (Basel). 2018 Jun 8;20(6):449. doi: 10.3390/e20060449.
5
Image Clustering with Optimization Algorithms and Color Space.
Entropy (Basel). 2018 Apr 18;20(4):296. doi: 10.3390/e20040296.
7
Low Computational Cost for Sample Entropy.
Entropy (Basel). 2018 Jan 13;20(1):61. doi: 10.3390/e20010061.
8
On the calculation of sample entropy using continuous and discrete human gait data.
Entropy (Basel). 2018 Oct;20(10). doi: 10.3390/e20100764. Epub 2018 Oct 5.
9
Bubble Entropy: An Entropy Almost Free of Parameters.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2711-2718. doi: 10.1109/TBME.2017.2664105.
10
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
BMC Bioinformatics. 2014;15 Suppl 6(Suppl 6):S2. doi: 10.1186/1471-2105-15-S6-S2. Epub 2014 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验