Suppr超能文献

基于深度学习利用光学相干断层扫描图像自动检测视网膜疾病。

Deep learning-based automated detection of retinal diseases using optical coherence tomography images.

作者信息

Li Feng, Chen Hua, Liu Zheng, Zhang Xue-Dian, Jiang Min-Shan, Wu Zhi-Zheng, Zhou Kai-Qian

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.

出版信息

Biomed Opt Express. 2019 Nov 11;10(12):6204-6226. doi: 10.1364/BOE.10.006204. eCollection 2019 Dec 1.

Abstract

Retinal disease classification is a significant problem in computer-aided diagnosis (CAD) for medical applications. This paper is focused on a 4-class classification problem to automatically detect choroidal neovascularization (CNV), diabetic macular edema (DME), DRUSEN, and NORMAL in optical coherence tomography (OCT) images. The proposed classification algorithm adopted an ensemble of four classification model instances to identify retinal OCT images, each of which was based on an improved residual neural network (ResNet50). The experiment followed a patient-level 10-fold cross-validation process, on development retinal OCT image dataset. The proposed approach achieved 0.973 (95% confidence interval [CI], 0.971-0.975) classification accuracy, 0.963 (95% CI, 0.960-0.966) sensitivity, and 0.985 (95% CI, 0.983-0.987) specificity at the B-scan level, achieving a matching or exceeding performance to that of ophthalmologists with significant clinical experience. Other performance measures used in the study were the area under receiver operating characteristic curve (AUC) and kappa value. The observations of the study implied that multi-ResNet50 ensembling was a useful technique when the availability of medical images was limited. In addition, we performed qualitative evaluation of model predictions, and occlusion testing to understand the decision-making process of our model. The paper provided an analytical discussion on misclassification and pathology regions identified by the occlusion testing also. Finally, we explored the effect of the integration of retinal OCT images and medical history data from patients on model performance.

摘要

视网膜疾病分类是医学应用中计算机辅助诊断(CAD)的一个重要问题。本文聚焦于一个四类分类问题,以自动检测光学相干断层扫描(OCT)图像中的脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)、玻璃膜疣和正常情况。所提出的分类算法采用了四个分类模型实例的集成来识别视网膜OCT图像,每个实例都基于改进的残差神经网络(ResNet50)。实验在开发的视网膜OCT图像数据集上遵循患者级别的10折交叉验证过程。所提出的方法在B扫描级别实现了0.973(95%置信区间[CI],0.971 - 0.975)的分类准确率、0.963(95%CI,0.960 - 0.966)的灵敏度和0.985(95%CI,0.983 - 0.987)的特异性,其性能与具有丰富临床经验的眼科医生相当或超过他们。该研究中使用的其他性能指标是受试者操作特征曲线下面积(AUC)和kappa值。研究结果表明,当医学图像可用性有限时,多ResNet50集成是一种有用的技术。此外,我们对模型预测进行了定性评估,并进行了遮挡测试以了解模型的决策过程。本文还对遮挡测试识别出的错误分类和病理区域进行了分析讨论。最后,我们探讨了整合视网膜OCT图像和患者病史数据对模型性能的影响。

相似文献

2
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.

引用本文的文献

7
A Survey on Optical Coherence Tomography-Technology and Application.光学相干断层扫描技术及其应用综述
Bioengineering (Basel). 2025 Jan 14;12(1):65. doi: 10.3390/bioengineering12010065.

本文引用的文献

2
Quality and content analysis of fundus images using deep learning.利用深度学习进行眼底图像的质量和内容分析。
Comput Biol Med. 2019 May;108:317-331. doi: 10.1016/j.compbiomed.2019.03.019. Epub 2019 Mar 26.
6
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
8
Automatic macular edema identification and characterization using OCT images.利用 OCT 图像自动识别和描述黄斑水肿。
Comput Methods Programs Biomed. 2018 Sep;163:47-63. doi: 10.1016/j.cmpb.2018.05.033. Epub 2018 May 29.
10
Artificial intelligence in retina.视网膜中的人工智能。
Prog Retin Eye Res. 2018 Nov;67:1-29. doi: 10.1016/j.preteyeres.2018.07.004. Epub 2018 Aug 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验