Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Department of Bioengineering and Therapeutic Science, University of California San Francisco, San Francisco, CA, USA.
Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6496-6502. doi: 10.1002/anie.202015184. Epub 2021 Jan 26.
The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
大肠杆菌中的 MinDE 蛋白作为一个典范的生物形态形成系统受到了极大的关注。最近,人们发现这些蛋白质不仅能在 ATP 水解的驱动下产生振荡的浓度梯度,而且能可逆地使巨大的囊泡变形。为了探索 Min 蛋白在实际执行机械功方面的潜力,我们引入了一个新的模型膜系统,即顶部有支撑脂质双层的平面囊泡堆叠。MinDE 振荡可以将这些平面囊泡反复变形为管状结构,并通过膜附着促进膜的逐渐扩散。取决于膜和缓冲液的组成,Min 振荡进一步诱导强烈的芽形成。总的来说,我们证明了在特定条件下,MinDE 的自组织可以导致在仿生系统上完成功,并在 MinDE 的生化反应循环和膜转化之间实现直接的机械化学耦联。