Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA.
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
Nat Nanotechnol. 2019 Jul;14(7):645-657. doi: 10.1038/s41565-019-0487-x. Epub 2019 Jul 3.
Advances in microscopy and molecular strategies have allowed researchers to gain insight into the intricate organization of the mammalian brain and the roles that neurons play in processing information. Despite vast progress, therapeutic strategies for neurological disorders remain limited, owing to a lack of biomaterials for sensing and modulating neuronal signalling in vivo. Therefore, there is a pressing need for developing material-based tools that can form seamless biointerfaces and interrogate the brain with unprecedented resolution. In this Review, we discuss important considerations in material design and implementation, highlight recent breakthroughs in neural sensing and modulation, and propose future directions in neurotechnology research. Our goal is to create an atlas for nano-enabled neural interfaces and to demonstrate how emerging nanotechnologies can interrogate neural systems spanning multiple biological length scales.
显微镜和分子策略的进步使研究人员能够深入了解哺乳动物大脑的复杂结构以及神经元在信息处理中所起的作用。尽管已经取得了巨大的进展,但由于缺乏用于体内感测和调节神经元信号的生物材料,神经疾病的治疗策略仍然有限。因此,迫切需要开发基于材料的工具,这些工具可以形成无缝的生物界面,并以前所未有的分辨率研究大脑。在这篇综述中,我们讨论了材料设计和实施中的重要考虑因素,强调了神经传感和调节方面的最新突破,并提出了神经技术研究的未来方向。我们的目标是创建一个纳米增强型神经接口图谱,并展示新兴纳米技术如何在多个生物学尺度上研究神经系统。