文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

调节肿瘤免疫抑制细胞以增强癌症免疫治疗的纳米药物。

Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.

作者信息

Zhu Yuefei, Yu Xiangrong, Thamphiwatana Soracha D, Zheng Ying, Pang Zhiqing

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.

Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China.

出版信息

Acta Pharm Sin B. 2020 Nov;10(11):2054-2074. doi: 10.1016/j.apsb.2020.08.010. Epub 2020 Aug 27.


DOI:10.1016/j.apsb.2020.08.010
PMID:33304779
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7714985/
Abstract

Cancer immunotherapy has veered the paradigm of cancer treatment. Despite recent advances in immunotherapy for improved antitumor efficacy, the complicated tumor microenvironment (TME) is highly immunosuppressive, yielding both astounding and unsatisfactory clinical successes. In this regard, clinical outcomes of currently available immunotherapy are confined to the varied immune systems owing in large part to the lack of understanding of the complexity and diversity of the immune context of the TME. Various advanced designs of nanomedicines could still not fully surmount the delivery barriers of the TME. The immunosuppressive TME may even dampen the efficacy of antitumor immunity. Recently, some nanotechnology-related strategies have been inaugurated to modulate the immunosuppressive cells within the tumor immune microenvironment (TIME) for robust immunotherapeutic responses. In this review, we will highlight the current understanding of the immunosuppressive TIME and identify disparate subclasses of TIME that possess an impact on immunotherapy, especially those unique classes associated with the immunosuppressive effect. The immunoregulatory cell types inside the immunosuppressive TIME will be delineated along with the existing and potential approaches for immunosuppressive cell modulation. After introducing the various strategies, we will ultimately outline both the novel therapeutic targets and the potential issues that affect the efficacy of TIME-based nanomedicines.

摘要

癌症免疫疗法已经改变了癌症治疗的模式。尽管免疫疗法最近取得了进展,提高了抗肿瘤疗效,但复杂的肿瘤微环境(TME)具有高度免疫抑制性,导致临床疗效既有惊人之处,也有不尽人意之处。在这方面,目前可用的免疫疗法的临床结果在很大程度上受到不同免疫系统的限制,这主要是由于对TME免疫背景的复杂性和多样性缺乏了解。各种先进的纳米药物设计仍然无法完全克服TME的递送障碍。免疫抑制性TME甚至可能削弱抗肿瘤免疫的疗效。最近,一些与纳米技术相关的策略已经启动,以调节肿瘤免疫微环境(TIME)中的免疫抑制细胞,从而产生强大的免疫治疗反应。在这篇综述中,我们将强调目前对免疫抑制性TIME的理解,并确定对免疫疗法有影响的不同TIME亚类,特别是那些与免疫抑制作用相关的独特类别。我们将描述免疫抑制性TIME内的免疫调节细胞类型以及现有的和潜在的免疫抑制细胞调节方法。在介绍了各种策略之后,我们最终将概述基于TIME的纳米药物的新治疗靶点和影响其疗效的潜在问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/8291b78a48e5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/0493b28832f2/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/d834c73a98f7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/668d751f1543/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/77c6860b2172/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/c821db99b759/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/ead7acbf182c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/b05f65d01b94/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/8291b78a48e5/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/0493b28832f2/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/d834c73a98f7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/668d751f1543/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/77c6860b2172/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/c821db99b759/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/ead7acbf182c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/b05f65d01b94/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7714985/8291b78a48e5/gr7.jpg

相似文献

[1]
Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy.

Acta Pharm Sin B. 2020-11

[2]
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy.

Acta Pharm Sin B. 2022-12

[3]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

[4]
Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy.

Asian J Pharm Sci. 2024-4

[5]
Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective.

Drug Deliv. 2020-12

[6]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[7]
Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?

Biomater Sci. 2021-5-4

[8]
Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies.

Theranostics. 2020

[9]
Engineered nanomedicines for augmenting the efficacy of colorectal cancer immunotherapy.

Nanomedicine (Lond). 2022-9

[10]
Remodeling tumor microenvironment with nanomedicines.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021-11

引用本文的文献

[1]
Immunopharmacology of gastric cancer-deciphering immune cell subset responses and nanoparticle-mediated targeting.

Front Pharmacol. 2025-5-19

[2]
Nano-drug delivery systems integrated with low radiation doses for enhanced therapeutic efficacy in cancer treatment.

World J Clin Cases. 2025-4-6

[3]
Epigenetic regulators combined with tumour immunotherapy: current status and perspectives.

Clin Epigenetics. 2025-3-21

[4]
Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies.

Med Oncol. 2025-3-18

[5]
Nanotechnology-Based Strategies for Safe and Effective Immunotherapy.

Molecules. 2024-12-11

[6]
Improved survival with second-line hepatic arterial infusion chemotherapy after atezolizumab-bevacizumab failure in hepatocellular carcinoma.

Front Oncol. 2024-12-12

[7]
Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer.

Front Immunol. 2024-12-10

[8]
Application of nanotechnology in the treatment of hepatocellular carcinoma.

Front Pharmacol. 2024-11-29

[9]
Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies.

Acta Pharm Sin B. 2024-11

[10]
Dendritic nanomedicine enhances chemo-immunotherapy by disturbing metabolism of cancer-associated fibroblasts for deep penetration and activating function of immune cells.

Acta Pharm Sin B. 2024-8

本文引用的文献

[1]
Engineered biomaterials for cancer immunotherapy.

MedComm (2020). 2020-5-27

[2]
Natural products remodel cancer-associated fibroblasts in desmoplastic tumors.

Acta Pharm Sin B. 2020-11

[3]
Material design for lymph node drug delivery.

Nat Rev Mater. 2019-6

[4]
Flow Rate Affects Nanoparticle Uptake into Endothelial Cells.

Adv Mater. 2020-6

[5]
Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies.

Theranostics. 2020

[6]
Tumor-Associated Macrophages: Recent Insights and Therapies.

Front Oncol. 2020-2-25

[7]
Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration.

Mol Pharm. 2020-4-6

[8]
Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.

Nat Rev Clin Oncol. 2020-2-7

[9]
Immune crosstalk in cancer progression and metastatic spread: a complex conversation.

Nat Rev Immunol. 2020-2-5

[10]
Ferroptosis: past, present and future.

Cell Death Dis. 2020-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索