Suppr超能文献

使用棱柱形光导阵列和单端读出的 PET 探测器中的亚 2 毫米相互作用深度定位,使用卷积神经网络。

Sub-2 mm depth of interaction localization in PET detectors with prismatoid light guide arrays and single-ended readout using convolutional neural networks.

机构信息

Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.

Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA.

出版信息

Med Phys. 2021 Mar;48(3):1019-1025. doi: 10.1002/mp.14654. Epub 2021 Feb 2.

Abstract

PURPOSE

Depth of interaction (DOI) readout in PET imaging has been researched in efforts to mitigate parallax error, which would enable the development of small diameter, high-resolution PET scanners. However, DOI PET has not yet been commercialized due to the lack of practical, cost-effective, and data efficient DOI readout methods. The rationale for this study was to develop a supervised machine learning algorithm for DOI estimation in PET that can be trained and deployed on unique sets of crystals.

METHODS

Depth collimated flood data was experimentally acquired using a Na-22 source with a depth-encoding single-ended readout Prism-PET module consisting of lutetium yttrium orthosilicate (LYSO) crystals coupled 4-to-1 to 3×3  silicon photomultiplier (SiPM) pixels on one end and a segmented prismatoid light guide array on the other end. A convolutional neural network (CNN) was trained to perform DOI estimation on data from center, edge and corner crystals in the Prism-PET module using (a) all non-zero readout pixels and (b) only the 4 highest readout signals per event. CNN testing was performed on data from crystals not included in CNN training.

RESULTS

An average DOI resolution of 1.84 mm full width at half maximum (FWHM) across all crystals was achieved when using all readout signals per event with the CNN compared to 3.04 mm FWHM DOI resolution using classical estimation. When using only the 4 highest signals per event, an average DOI resolution of 1.92 mm FWHM was achieved, representing only a 4% dropoff in CNN performance compared to using all non-zero pixels per event.

CONCLUSIONS

Our CNN-based DOI estimation algorithm provides the best reported DOI resolution in a single-ended readout module and can be readily deployed on crystals not used for model training.

摘要

目的

在 PET 成像中,已经研究了交互深度(DOI)读出,以努力减轻视差误差,这将使小直径、高分辨率的 PET 扫描仪得以发展。然而,由于缺乏实用、经济高效和数据高效的 DOI 读出方法,DOI PET 尚未商业化。这项研究的原理是开发一种用于 PET 中的 DOI 估计的监督机器学习算法,该算法可以在独特的晶体集上进行训练和部署。

方法

使用 Na-22 源实验获得深度准直洪水数据,该数据由深度编码单端读出棱镜-PET 模块组成,该模块由与硅光电倍增管(SiPM)像素的 4 对 1 耦合的硅酸镥钇(LYSO)晶体组成,另一端为分段棱镜状光导阵列。卷积神经网络(CNN)经过训练,可使用(a)所有非零读出像素和(b)每个事件仅使用 4 个最高读出信号,对棱镜-PET 模块中的中心、边缘和角晶体的数据进行 DOI 估计。CNN 测试在不包括在 CNN 训练中的晶体数据上进行。

结果

与使用经典估计方法相比,当每个事件使用所有读出信号时,CNN 在所有晶体中实现了平均 DOI 分辨率为 1.84mm 全宽半最大值(FWHM),而 DOI 分辨率为 3.04mm FWHM。当每个事件仅使用 4 个最高信号时,平均 DOI 分辨率为 1.92mm FWHM,与每个事件使用所有非零像素相比,CNN 性能仅下降 4%。

结论

我们基于 CNN 的 DOI 估计算法在单端读出模块中提供了最佳报道的 DOI 分辨率,并且可以很容易地部署在未用于模型训练的晶体上。

相似文献

引用本文的文献

本文引用的文献

7
First Human Imaging Studies with the EXPLORER Total-Body PET Scanner.首例全身 EXPLORER PET 扫描仪人体成像研究。
J Nucl Med. 2019 Mar;60(3):299-303. doi: 10.2967/jnumed.119.226498. Epub 2019 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验