Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
ACS Biomater Sci Eng. 2020 Oct 12;6(10):5911-5929. doi: 10.1021/acsbiomaterials.0c00923. Epub 2020 Sep 8.
Accidents on battlefields and roads often lead to hemorrhage and uncontrolled bleeding. Hence, immediate hemorrhage control remains of great importance to reduce mortality and socioeconomic loss. Herein, nanobiocomposite scaffolds (film and sponge) have been fabricated for the first time through the incorporation of a graphene-silver-polycationic peptide (GAP) nanocomposite into chitosan (Cs). Ten different scaffolds viz. Cs, Cs-GAP25, Cs-GAP50, Cs-GAP75, and Cs-GAP100 were prepared in the form of films and sponges. Cs-GAP100 nanobiocomposite sponge exhibited excellent porosity, fluid absorption, and blood clotting capacity, whereas Cs-GAP100 nanobiocomposite film showed excellent mechanical strength and poor degradation property. The presence of graphene in GAP provided a unique mechanical property and prevented the natural degradation, whereas silver nanoparticles and polycationic peptide provided an efficient antimicrobial property to the scaffolds. The high surface area of graphene and the hydrophilic nature of the polycationic peptide also imparted high fluid and blood absorption capacity to Cs-GAP nanobiocomposite scaffolds. The in vitro whole blood clotting assay demonstrated that clotting efficacy improved with the concentration of GAP nanocomposite and Cs-GAP100 nanobiocomposite sponge significantly ( value <0.003) reduced the clotting time to 60 s, as compared to the pristine chitosan dressings. On the other side, the Cs-GAP100 nanobiocomposite film showed an excellent wound-healing property. The Cs-GAP100 nanobiocomposite demonstrated profound antibacterial activity against and . The intracellular reactive oxygen species (ROS) assay explained the interfacial interaction of Cs-GAP100 nanobiocomposite and bacterial cells, resulting in cell damage and finally cell death. The obtained information thus provided a novel safe-by-design concept for fabrication of Cs-GAP100 nanobiocomposite scaffolds and demonstrated potential development of antibacterial hemostatic and wound dressing in traumacare management.
战场上和道路上的事故常常导致出血和无法控制的出血。因此,立即控制出血对于降低死亡率和减少社会经济损失非常重要。在此,首次通过将石墨烯-银-聚阳离子肽(GAP)纳米复合材料掺入壳聚糖(Cs)中制备了纳米生物复合支架(薄膜和海绵)。制备了十种不同的支架,即 Cs、Cs-GAP25、Cs-GAP50、Cs-GAP75 和 Cs-GAP100,它们以薄膜和海绵的形式存在。Cs-GAP100 纳米生物复合海绵表现出优异的多孔性、流体吸收和凝血能力,而 Cs-GAP100 纳米生物复合薄膜则表现出优异的机械强度和较差的降解性能。GAP 中的石墨烯提供了独特的机械性能,并阻止了自然降解,而银纳米粒子和聚阳离子肽则为支架提供了有效的抗菌性能。石墨烯的高表面积和聚阳离子肽的亲水性也赋予了 Cs-GAP 纳米生物复合支架高的流体和血液吸收能力。体外全血凝血试验表明,随着 GAP 纳米复合材料浓度的增加,凝血效果得到改善,与原始壳聚糖敷料相比,Cs-GAP100 纳米生物复合海绵显著( value <0.003)将凝血时间缩短至 60s。另一方面,Cs-GAP100 纳米生物复合薄膜表现出优异的伤口愈合性能。Cs-GAP100 纳米生物复合材料对 和 表现出显著的抗菌活性。细胞内活性氧(ROS)测定解释了 Cs-GAP100 纳米生物复合材料与细菌细胞的界面相互作用,导致细胞损伤,最终导致细胞死亡。因此,所获得的信息为 Cs-GAP100 纳米生物复合材料支架的设计提供了一种新的安全概念,并展示了在创伤护理管理中抗菌止血和伤口敷料的潜在发展。