Suppr超能文献

利用合成 CT 容积分析骨分割和表面生成策略的准确性。

Accuracy of bone segmentation and surface generation strategies analyzed by using synthetic CT volumes.

机构信息

Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany.

出版信息

J Anat. 2021 Jun;238(6):1456-1471. doi: 10.1111/joa.13383. Epub 2020 Dec 16.

Abstract

Different kinds of bone measurements are commonly derived from computed-tomography (CT) volumes to answer a multitude of questions in biology and related fields. The underlying steps of bone segmentation and, optionally, polygon surface generation are crucial to keep the measurement error small. In this study, the performance of different, easily accessible segmentation techniques (global thresholding, automatic local thresholding, weighted random walk, neural network, and watershed) and surface generation approaches (different algorithms combined with varying degrees of simplification) was analyzed and recommendations for minimizing inaccuracies were derived. The different approaches were applied to synthetic CT volumes for which the correct segmentation and surface geometry were known. The most accurate segmentations of the synthetic volumes were achieved by setting a case-specific window to the gray value histogram and subsequently applying automatic local thresholding with appropriately chosen thresholding method and radius. Surfaces generated by the Amira® module Generate Lego Surface in combination with careful surface simplification were the most accurate. Surfaces with sub-voxel accuracy were obtained even for synthetic CT volumes with low contrast-to-noise ratios. Segmentation trials with real CT volumes supported the findings. Very accurate segmentations and surfaces can be derived from CT volumes by using readily accessible software packages. The presented results and derived recommendations will help to reduce the measurement error in future studies. Furthermore, the demonstrated strategies for assessing segmentation and surface qualities can be adopted to quantify the performance of new segmentation approaches in future studies.

摘要

不同类型的骨测量通常源自计算机断层扫描 (CT) 体积,以回答生物学和相关领域的众多问题。骨分割和(可选)多边形曲面生成的基本步骤对于保持测量误差较小至关重要。在这项研究中,分析了不同的、易于访问的分割技术(全局阈值、自动局部阈值、加权随机游走、神经网络和分水岭)和曲面生成方法(不同的算法与不同程度的简化相结合)的性能,并得出了最小化不准确性的建议。不同的方法应用于合成 CT 体积,其中正确的分割和曲面几何形状是已知的。通过将特定于案例的窗口设置到灰度值直方图,然后应用具有适当选择的阈值方法和半径的自动局部阈值,可以实现合成体积最准确的分割。通过使用易于访问的软件包,可以从 CT 体积中获得具有亚像素精度的曲面。即使对于对比度噪声比低的合成 CT 体积,也可以获得具有亚像素精度的曲面。使用真实 CT 体积进行的分割试验支持这一发现。非常准确的分割和曲面可以从 CT 体积中得出。所呈现的结果和得出的建议将有助于减少未来研究中的测量误差。此外,所展示的分割和曲面质量评估策略可以被采用,以在未来的研究中量化新的分割方法的性能。

相似文献

4
Fast segmentation of bone in CT images using 3D adaptive thresholding.使用 3D 自适应阈值法快速分割 CT 图像中的骨骼。
Comput Biol Med. 2010 Feb;40(2):231-6. doi: 10.1016/j.compbiomed.2009.11.020. Epub 2010 Jan 6.

本文引用的文献

9
Automatic thresholding from the gradients of region boundaries.基于区域边界梯度的自动阈值处理。
J Microsc. 2017 Feb;265(2):185-195. doi: 10.1111/jmi.12474. Epub 2016 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验