Suppr超能文献

基于语料库与实验的中文阅读中字词频效应研究:阅读模型的理论启示。

A corpus-based versus experimental examination of word- and character-frequency effects in Chinese reading: Theoretical implications for models of reading.

机构信息

Department of Cognitive Science, Macquarie University.

Department of Psychology, Sun Yat-sen University.

出版信息

J Exp Psychol Gen. 2021 Aug;150(8):1612-1641. doi: 10.1037/xge0001014. Epub 2020 Dec 17.

Abstract

Chinese words consist of a variable number of characters that are normally written in continuous lines, without the blank spaces that are used to separate words in most alphabetic writing systems. These conventions raise questions about the relative roles of character versus whole-word processing in word identification, and how words are segmented from strings of characters for the purpose of their identification and saccade targeting. The present article attempts to address these questions by reporting an eye-movement experiment in which 60 participants read a corpus of sentences containing two-character target words that varied in terms of their overall frequency and the frequency of their initial characters. We examine participants' eye movements using both corpus-based statistical models and more standard analyses of our target words. In addition to documenting how key lexical variables influence eye movements and highlighting a few discrepancies between the results obtained using our two statistical approaches, our experiment shows that high-frequency initial characters can actually slow word identification. We discuss the theoretical significance of this finding and others for current models of Chinese reading, and then describe a new computational model of eye-movement control during the reading of Chinese. Finally, we report simulations showing that this model can account for our findings. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

中文由数量不定的字符组成,通常连续书写,不像大多数字母书写系统那样用空格来分隔单词。这些惯例使得人们对字符和整词处理在单词识别中的相对作用以及为了识别和注视目标而如何从字符串中切分单词产生疑问。本文通过报告一项眼动实验来尝试回答这些问题,该实验中 60 名参与者阅读了包含两个字符目标词的句子语料库,这些目标词的整体频率和首字符频率各不相同。我们使用基于语料库的统计模型和对我们的目标词进行更标准的分析来检查参与者的眼动。除了记录关键词汇变量如何影响眼动以及突出我们两种统计方法得到的结果之间的一些差异外,我们的实验还表明,高频首字符实际上会减慢单词识别速度。我们讨论了这一发现以及对当前中文阅读模型的其他理论意义,然后描述了一个新的中文阅读眼动控制计算模型。最后,我们报告了模拟结果,表明该模型可以解释我们的发现。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验