Suppr超能文献

与乳腺癌骨转移相关的上皮-间质转化的基因组学和免疫浸润模式分析。

Analysis of genomics and immune infiltration patterns of epithelial-mesenchymal transition related to metastatic breast cancer to bone.

作者信息

Liu Shuzhong, Song An, Wu Yunxiao, Yao Siyuan, Wang Muchuan, Niu Tong, Gao Chengao, Li Ziquan, Zhou Xi, Huo Zhen, Yang Bo, Liu Yong, Wang Yipeng

机构信息

Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.

Department of Endocrinology (AS), Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.

出版信息

Transl Oncol. 2021 Feb;14(2):100993. doi: 10.1016/j.tranon.2020.100993. Epub 2020 Dec 14.

Abstract

OBJECTIVE

This study aimed to design a weighted co-expression network and a breast cancer (BC) prognosis evaluation system using a specific whole-genome expression profile combined with epithelial-mesenchymal transition (EMT)-related genes; thus, providing the basis and reference for assessing the prognosis risk of spreading of metastatic breast cancer (MBC) to the bone.

METHODS

Four gene expression datasets of a large number of samples from GEO were downloaded and combined with the dbEMT database to screen out EMT differentially expressed genes (DEGs). Using the GSE20685 dataset as a training set, we designed a weighted co-expression network for EMT DEGs, and the hub genes most relevant to metastasis were selected. We chose eight hub genes to build prognostic assessment models to estimate the 3-, 5-, and 10-year survival rates. We evaluated the models' independent predictive abilities using univariable and multivariable Cox regression analyses. Two GEO datasets related to bone metastases from BC were downloaded and used to perform differential genetic analysis. We used CIBERSORT to distinguish 22 immune cell types based on tumor transcripts.

RESULTS

Differential expression analysis showed a total of 304 DEGs, which were mainly related to proteoglycans in cancer, and the PI3K/Akt and the TGF-β signaling pathways, as well as mesenchyme development, focal adhesion, and cytokine binding functionally. The 50 hub genes were selected, and a survival-related linear risk assessment model consisting of eight genes (FERMT2, ITGA5, ITGB1, MCAM, CEMIP, HGF, TGFBR1, F2RL2) was constructed. The survival rate of patients in the high-risk group (HRG) was substantially lower than that of the low-risk group (LRG), and the 3-, 5-, and 10-year AUCs were 0.68, 0.687, and 0.672, respectively. In addition, we explored the DEGs of BC bone metastasis, and BMP2, BMPR2, and GREM1 were differentially expressed in both data sets. In GSE20685, memory B cells, resting memory T cell CD4 cells, T regulatory cells (T), γδ T cells, monocytes, M0 macrophages, M2 macrophages, resting dendritic cells (DCs), resting mast cells, and neutrophils exhibited substantially different distribution between HRG and LRG. In GSE45255, there was a considerable difference in abundance of activated NK cells, monocytes, M0 macrophages, M2 macrophages, resting DCs, and neutrophils in HRG and LRG.

CONCLUSIONS

Based on the weighted co-expression network for breast-cancer-metastasis-related DEGs, we screened hub genes to explore a prognostic model and the immune infiltration patterns of MBC. The results of this study provided a factual basis to bioinformatically explore the molecular mechanisms of the spread of MBC to the bone and the possibility of predicting the survival of patients.

摘要

目的

本研究旨在利用特定的全基因组表达谱结合上皮-间质转化(EMT)相关基因设计一个加权共表达网络和一个乳腺癌(BC)预后评估系统;从而为评估转移性乳腺癌(MBC)向骨转移的预后风险提供依据和参考。

方法

从GEO下载了四个包含大量样本的基因表达数据集,并与dbEMT数据库相结合,筛选出EMT差异表达基因(DEG)。以GSE20685数据集作为训练集,我们为EMT DEG设计了一个加权共表达网络,并选择了与转移最相关的枢纽基因。我们选择了八个枢纽基因构建预后评估模型,以估计3年、5年和10年生存率。我们使用单变量和多变量Cox回归分析评估模型的独立预测能力。下载了两个与BC骨转移相关的GEO数据集,并用于进行差异基因分析。我们使用CIBERSORT根据肿瘤转录本区分22种免疫细胞类型。

结果

差异表达分析显示共有304个DEG,主要与癌症中的蛋白聚糖、PI3K/Akt和TGF-β信号通路以及间充质发育、粘着斑和细胞因子结合功能相关。选择了50个枢纽基因,并构建了一个由八个基因(FERMT2、ITGA5、ITGB1、MCAM、CEMIP、HGF、TGFBR1、F2RL2)组成的与生存相关的线性风险评估模型。高风险组(HRG)患者的生存率显著低于低风险组(LRG),3年、5年和10年的AUC分别为0.68、0.687和0.672。此外,我们探索了BC骨转移的DEG,BMP2、BMPR2和GREM1在两个数据集中均有差异表达。在GSE20685中,记忆B细胞、静息记忆T细胞CD4细胞、调节性T细胞(T)、γδT细胞、单核细胞、M0巨噬细胞、M2巨噬细胞、静息树突状细胞(DC)、静息肥大细胞和中性粒细胞在HRG和LRG之间表现出显著不同的分布。在GSE45255中,HRG和LRG中活化NK细胞、单核细胞、M0巨噬细胞、M2巨噬细胞、静息DC和中性粒细胞的丰度存在相当大的差异。

结论

基于与乳腺癌转移相关的DEG的加权共表达网络,我们筛选了枢纽基因以探索MBC的预后模型和免疫浸润模式。本研究结果为生物信息学探索MBC向骨转移的分子机制及预测患者生存可能性提供了事实依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f59/7736716/08724443893e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验