Suppr超能文献

极端炎热气候对印度新冠疫情的影响

Impact of Extreme Hot Climate on COVID-19 Outbreak in India.

作者信息

Sasikumar Keerthi, Nath Debashis, Nath Reshmita, Chen Wen

机构信息

Center for Monsoon System Research, Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China.

University of Chinese Academy of Sciences Beijing China.

出版信息

Geohealth. 2020 Dec 1;4(12):e2020GH000305. doi: 10.1029/2020GH000305. eCollection 2020 Dec.

Abstract

Coronavirus Disease 2019 (COVID-19) pandemic poses extreme threat to public health and economy, particularly to the nations with higher population density. The disease first reported in Wuhan, China; later, it spreads elsewhere, and currently, India emerged as COVID-19 hotspot. In India, we selected 20 densely populated cities having infection counts higher than 500 (by 15 May) as COVID-19 epicenters. Daily COVID-19 count has strong covariability with local temperature, which accounts approximately 65-85% of the explained variance; i.e., its spread depends strongly on local temperature rise prior to community transmission phase. The COVID-19 cases are clustered at temperature and humidity ranging within 27-32°C and 25-45%, respectively. We introduce a combined temperature and humidity profile, which favors rapid COVID-19 growth at the initial phase. The results are highly significant for predicting future COVID-19 outbreaks and modeling cities based on environmental conditions. On the other hand, CO emission is alarmingly high in South Asia (India) and entails high risk of climate change and extreme hot summer. Zoonotic viruses are sensitive to warming induced climate change; COVID-19 epicenters are collocated on CO emission hotspots. The COVID-19 count distribution peaks at 31.0°C, which is 1.0°C higher than current (2020) and historical (1961-1990) mean, value. Approximately, 72% of the COVID-19 cases are clustered at severe to record-breaking hot extremes of historical temperature distribution spectrum. Therefore, extreme climate change has important role in the spread of COVID-19 pandemic. Hence, a strenuous mitigation measure to abate greenhouse gas (GHG) emission is essential to avoid such pandemics in future.

摘要

2019冠状病毒病(COVID-19)大流行对公共卫生和经济构成了极端威胁,尤其是对人口密度较高的国家。该疾病最初在中国武汉被报告;后来,它传播到其他地方,目前,印度成为了COVID-19热点地区。在印度,我们选择了20个人口密集且感染病例数高于500的城市(截至5月15日)作为COVID-19疫情中心。COVID-19的每日病例数与当地温度具有很强的协变性,当地温度约占解释方差的65%-85%;也就是说,其传播在很大程度上取决于社区传播阶段之前当地温度的升高。COVID-19病例聚集在温度为27-32°C、湿度为25-45%的范围内。我们引入了一个综合温度和湿度剖面,它有利于COVID-19在初始阶段的快速增长。这些结果对于预测未来的COVID-19疫情爆发以及根据环境条件对城市进行建模具有高度重要性。另一方面,南亚(印度)的一氧化碳排放量高得惊人,带来了气候变化和极端炎热夏季的高风险。人畜共患病毒对气候变暖引发的气候变化很敏感;COVID-19疫情中心与一氧化碳排放热点地区重合。COVID-19病例数分布在31.0°C时达到峰值,这比当前(2020年)和历史(1961-1990年)平均温度高1.0°C。大约72%的COVID-19病例聚集在历史温度分布谱中严重到破纪录的炎热极端温度范围内。因此,极端气候变化在COVID-19大流行的传播中起着重要作用。因此,采取强有力的减排措施以减少温室气体(GHG)排放对于避免未来发生此类大流行至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbae/7742201/5e72dce8533b/GH2-4-e2020GH000305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验