Borrman Tyler, Pierce Brian G, Vreven Thom, Baker Brian M, Weng Zhiping
Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
Bioinformatics. 2021 Apr 1;36(22-23):5377-5385. doi: 10.1093/bioinformatics/btaa1050.
The binding of T-cell receptors (TCRs) to their target peptide MHC (pMHC) ligands initializes the cell-mediated immune response. In autoimmune diseases such as multiple sclerosis, the TCR erroneously recognizes self-peptides as foreign and activates an immune response against healthy cells. Such responses can be triggered by cross-recognition of the autoreactive TCR with foreign peptides. Hence, it would be desirable to identify such foreign-antigen triggers to provide a mechanistic understanding of autoimmune diseases. However, the large sequence space of foreign antigens presents an obstacle in the identification of cross-reactive peptides.
Here, we present an in silico modeling and scoring method which exploits the structural properties of TCR-pMHC complexes to predict the binding of cross-reactive peptides. We analyzed three mouse TCRs and one human TCR isolated from a patient with multiple sclerosis. Cross-reactive peptides for these TCRs were previously identified via yeast display coupled with deep sequencing, providing a robust dataset for evaluating our method. Modeling query peptides in their associated TCR-pMHC crystal structures, our method accurately selected the top binding peptides from sets containing more than a hundred thousand unique peptides.
Analyses were performed using custom Python and R scripts available at https://github.com/weng-lab/antigen-predict.
Supplementary data are available at Bioinformatics online.
T细胞受体(TCR)与其靶肽MHC(pMHC)配体的结合启动了细胞介导的免疫反应。在自身免疫性疾病如多发性硬化症中,TCR错误地将自身肽识别为外来肽,并激活针对健康细胞的免疫反应。这种反应可由自身反应性TCR与外来肽的交叉识别引发。因此,识别此类外来抗原触发因素以提供对自身免疫性疾病的机制理解将是很有必要的。然而,外来抗原的巨大序列空间在交叉反应性肽的识别中构成了障碍。
在此,我们提出了一种计算机模拟建模和评分方法,该方法利用TCR-pMHC复合物的结构特性来预测交叉反应性肽的结合。我们分析了从一名多发性硬化症患者分离出的三种小鼠TCR和一种人类TCR。这些TCR的交叉反应性肽先前已通过酵母展示结合深度测序鉴定出来,为评估我们的方法提供了一个可靠的数据集。我们的方法在相关的TCR-pMHC晶体结构中对查询肽进行建模,能够准确地从包含超过十万种独特肽的集合中选出结合能力最强的肽。
使用可在https://github.com/weng-lab/antigen-predict获取的定制Python和R脚本进行分析。
补充数据可在《生物信息学》在线获取。