Suppr超能文献

用于预测交叉反应性肽的TCR-pMHC复合物的高通量建模与评分

High-throughput modeling and scoring of TCR-pMHC complexes to predict cross-reactive peptides.

作者信息

Borrman Tyler, Pierce Brian G, Vreven Thom, Baker Brian M, Weng Zhiping

机构信息

Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.

出版信息

Bioinformatics. 2021 Apr 1;36(22-23):5377-5385. doi: 10.1093/bioinformatics/btaa1050.

Abstract

MOTIVATION

The binding of T-cell receptors (TCRs) to their target peptide MHC (pMHC) ligands initializes the cell-mediated immune response. In autoimmune diseases such as multiple sclerosis, the TCR erroneously recognizes self-peptides as foreign and activates an immune response against healthy cells. Such responses can be triggered by cross-recognition of the autoreactive TCR with foreign peptides. Hence, it would be desirable to identify such foreign-antigen triggers to provide a mechanistic understanding of autoimmune diseases. However, the large sequence space of foreign antigens presents an obstacle in the identification of cross-reactive peptides.

RESULTS

Here, we present an in silico modeling and scoring method which exploits the structural properties of TCR-pMHC complexes to predict the binding of cross-reactive peptides. We analyzed three mouse TCRs and one human TCR isolated from a patient with multiple sclerosis. Cross-reactive peptides for these TCRs were previously identified via yeast display coupled with deep sequencing, providing a robust dataset for evaluating our method. Modeling query peptides in their associated TCR-pMHC crystal structures, our method accurately selected the top binding peptides from sets containing more than a hundred thousand unique peptides.

AVAILABILITY AND IMPLEMENTATION

Analyses were performed using custom Python and R scripts available at https://github.com/weng-lab/antigen-predict.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

T细胞受体(TCR)与其靶肽MHC(pMHC)配体的结合启动了细胞介导的免疫反应。在自身免疫性疾病如多发性硬化症中,TCR错误地将自身肽识别为外来肽,并激活针对健康细胞的免疫反应。这种反应可由自身反应性TCR与外来肽的交叉识别引发。因此,识别此类外来抗原触发因素以提供对自身免疫性疾病的机制理解将是很有必要的。然而,外来抗原的巨大序列空间在交叉反应性肽的识别中构成了障碍。

结果

在此,我们提出了一种计算机模拟建模和评分方法,该方法利用TCR-pMHC复合物的结构特性来预测交叉反应性肽的结合。我们分析了从一名多发性硬化症患者分离出的三种小鼠TCR和一种人类TCR。这些TCR的交叉反应性肽先前已通过酵母展示结合深度测序鉴定出来,为评估我们的方法提供了一个可靠的数据集。我们的方法在相关的TCR-pMHC晶体结构中对查询肽进行建模,能够准确地从包含超过十万种独特肽的集合中选出结合能力最强的肽。

可用性和实现方式

使用可在https://github.com/weng-lab/antigen-predict获取的定制Python和R脚本进行分析。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

7
Genome-wide structural modelling of TCR-pMHC interactions.TCR-pMHC相互作用的全基因组结构建模
BMC Genomics. 2013;14 Suppl 5(Suppl 5):S5. doi: 10.1186/1471-2164-14-S5-S5. Epub 2013 Oct 16.

引用本文的文献

4
Strengths and limitations of web servers for the modeling of TCRpMHC complexes.用于TCRpMHC复合物建模的网络服务器的优势与局限性。
Comput Struct Biotechnol J. 2024 Jul 1;23:2938-2948. doi: 10.1016/j.csbj.2024.06.028. eCollection 2024 Dec.
6
TCR sequencing: applications in immuno-oncology research.TCR测序:在免疫肿瘤学研究中的应用
Immunooncol Technol. 2023 Feb 4;17:100373. doi: 10.1016/j.iotech.2023.100373. eCollection 2023 Mar.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验