Suppr超能文献

多发性硬化症中的异位淋巴滤泡:疾病控制中心?

Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control?

作者信息

Negron Austin, Stüve Olaf, Forsthuber Thomas G

机构信息

Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States.

Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.

出版信息

Front Neurol. 2020 Dec 8;11:607766. doi: 10.3389/fneur.2020.607766. eCollection 2020.

Abstract

While the contribution of autoreactive CD4 T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4 T cells, namely follicular T helper (T) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4 T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (T) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating T cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of T cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.

摘要

虽然自身反应性CD4 T细胞在多发性硬化症(MS)发病机制中的作用已被广泛认可,但B细胞耗竭单克隆抗体(mAb)疗法的出现为MS发病机制背后复杂的细胞机制带来了新的启示。有证据支持B细胞在抗体依赖性和非依赖性能力方面均有参与。T细胞依赖性B细胞反应在生发中心(GCs)起源并形成,生发中心是调节B细胞活化并随后分化为抗体分泌细胞(ASCs)或记忆B细胞的特殊微环境,对于这一过程,CD4 T细胞,即滤泡辅助性T细胞是必不可少的。ASCs主要通过分泌的Ig发挥其效应功能,但也通过分泌促炎和抗炎细胞因子来发挥作用。记忆B细胞除了能够迅速分化为ASCs外,还可作为有效的抗原呈递细胞(APC)作用于同源记忆CD4 T细胞。滤泡调节性T细胞至少部分地防止了异常的B细胞反应,滤泡调节性T细胞分别通过表达抑制性受体和细胞因子(如CTLA4和IL-10),是GC衍生的自身反应性B细胞反应的关键抑制因子。因此,GCs代表外周B细胞耐受的关键位点,其失调已被认为与几种自身免疫性疾病的发病机制有关。在MS患者中,类GC软脑膜异位淋巴滤泡(eLFs)的存在促使人们将其作为致病性B和T细胞反应的潜在来源进行研究。MS患者脑脊液(CSF)中CXCL13水平升高和循环T细胞增多支持了这一假设,这两者都是启动和维持GC反应所必需的。此外,死后MS患者样本中的eLFs明显缺乏T细胞。GCs产生并维持,但也调节驱动MS病理的自身反应性B和T细胞反应的能力使其成为治疗干预的一个有吸引力的靶点。在这篇综述中,我们将总结来自人类和动物模型的证据,支持B细胞作为MS的驱动因素、类GC eLFs在MS发病机制中的作用以及控制MS中GC衍生的自身反应性B细胞反应的机制。

相似文献

1
Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control?
Front Neurol. 2020 Dec 8;11:607766. doi: 10.3389/fneur.2020.607766. eCollection 2020.
3
Regulation of the Germinal Center Response.
Front Immunol. 2018 Oct 25;9:2469. doi: 10.3389/fimmu.2018.02469. eCollection 2018.
4
Ectopic germinal center formation in rheumatoid synovitis.
Ann N Y Acad Sci. 2003 Apr;987:140-9. doi: 10.1111/j.1749-6632.2003.tb06042.x.
5
Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells.
Front Immunol. 2020 Jan 15;10:3090. doi: 10.3389/fimmu.2019.03090. eCollection 2019.
6
T cell immune response within B-cell follicles.
Adv Immunol. 2019;144:155-171. doi: 10.1016/bs.ai.2019.08.008. Epub 2019 Sep 16.
10
IL-6 Impairs Vaccine Responses in Neonatal Mice.
Front Immunol. 2018 Dec 20;9:3049. doi: 10.3389/fimmu.2018.03049. eCollection 2018.

引用本文的文献

4
CXCL13 as a Biomarker: Background and Utility in Multiple Sclerosis.
Biomolecules. 2024 Nov 30;14(12):1541. doi: 10.3390/biom14121541.
5
CXCL13: a common target for immune-mediated inflammatory diseases.
Clin Exp Med. 2024 Oct 24;24(1):244. doi: 10.1007/s10238-024-01508-8.
6
B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression.
Front Cell Neurosci. 2024 Apr 8;18:1360242. doi: 10.3389/fncel.2024.1360242. eCollection 2024.
8
Single-Cell Profiling Indicates a Proinflammatory Role of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis.
Neurol Neuroimmunol Neuroinflamm. 2024 Jan;11(1):e200185. doi: 10.1212/NXI.0000000000200185. Epub 2023 Dec 15.
9
Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies.
F1000Res. 2023 Aug 1;10:1305. doi: 10.12688/f1000research.74506.2. eCollection 2021.
10
A Dual Role of Osteopontin in Modifying B Cell Responses.
Biomedicines. 2023 Jul 12;11(7):1969. doi: 10.3390/biomedicines11071969.

本文引用的文献

1
Targeting co-stimulatory molecules in autoimmune disease.
Nat Rev Drug Discov. 2020 Dec;19(12):860-883. doi: 10.1038/s41573-020-0081-9. Epub 2020 Sep 16.
2
B cells polarize pathogenic inflammatory T helper subsets through ICOSL-dependent glycolysis.
Sci Adv. 2020 Sep 9;6(37). doi: 10.1126/sciadv.abb6296. Print 2020 Sep.
3
A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22932-22943. doi: 10.1073/pnas.2008523117. Epub 2020 Aug 28.
4
Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes.
Nat Immunol. 2020 Oct;21(10):1244-1255. doi: 10.1038/s41590-020-0744-z. Epub 2020 Aug 3.
5
Ectopic Lymphoid Organs and Immune-Mediated Diseases: Molecular Basis for Pharmacological Approaches.
Trends Mol Med. 2020 Nov;26(11):1021-1033. doi: 10.1016/j.molmed.2020.06.004. Epub 2020 Jun 26.
6
The role of B cells in the immunopathogenesis of multiple sclerosis.
Immunology. 2020 Aug;160(4):325-335. doi: 10.1111/imm.13198. Epub 2020 May 10.
7
B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis.
Brain Pathol. 2020 Jul;30(4):779-793. doi: 10.1111/bpa.12841. Epub 2020 Apr 26.
8
Lymph node stromal cells: cartographers of the immune system.
Nat Immunol. 2020 Apr;21(4):369-380. doi: 10.1038/s41590-020-0635-3. Epub 2020 Mar 23.
9
Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides.
PLoS One. 2020 Feb 21;15(2):e0228883. doi: 10.1371/journal.pone.0228883. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验