Suppr超能文献

属性监督概率依赖矩阵三因子分解模型用于预测不良药物-药物相互作用。

Attribute Supervised Probabilistic Dependent Matrix Tri-Factorization Model for the Prediction of Adverse Drug-Drug Interaction.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2820-2832. doi: 10.1109/JBHI.2020.3048059. Epub 2021 Jul 27.

Abstract

Adverse drug-drug interaction (ADDI) becomes a significant threat to public health. Despite the detection of ADDIs is experimentally implemented in the early development phase of drug design, many potential ADDIs are still clinically explored by accidents, leading to a large number of morbidity and mortality. Several computational models are designed for ADDI prediction. However, they take no consideration of drug dependency, although many drugs usually produce synergistic effects and own highly mutual dependency in treatments, which contains underlying information about ADDIs and benefits ADDI prediction. In this paper, we design a dependent network to model the drug dependency and propose an attribute supervised learning model Probabilistic Dependent Matrix Tri-Factorization (PDMTF) for ADDI prediction. In particular, PDMTF incorporates two drug attributes, molecular structure and side effect, and their correlation to model the adverse interactions among drugs. The dependent network is represented by a dependent matrix, which is first formulated by the row precision matrix of the predicted attribute matrices and then regularized by the molecular structure similarities among drugs. Meanwhile, an efficient alternating algorithm is designed for solving the optimization problem of PDMTF. Experiments demonstrate the superior performance of the proposed model when compared with eight baselines and its two variants.

摘要

药物-药物相互作用(ADDI)对公共健康构成了重大威胁。尽管在药物设计的早期开发阶段已经通过实验进行了 ADDI 的检测,但许多潜在的 ADDI 仍然是通过偶然的临床探索发现的,导致大量发病率和死亡率。已经设计了几种计算模型来预测 ADDI。然而,它们没有考虑药物的依赖性,尽管许多药物在治疗中通常会产生协同作用并且具有高度的相互依赖性,这包含了关于 ADDI 的潜在信息并有助于预测 ADDI。在本文中,我们设计了一个依赖网络来模拟药物的依赖性,并提出了一种属性监督学习模型概率依赖矩阵三因子分解(PDMTF)来预测 ADDI。特别是,PDMTF 结合了两种药物属性,分子结构和副作用,以及它们之间的相关性,以模拟药物之间的不良相互作用。依赖网络由一个依赖矩阵表示,该矩阵首先由预测属性矩阵的行精度矩阵来表示,然后通过药物之间的分子结构相似性来进行正则化。同时,还设计了一种有效的交替算法来解决 PDMTF 的优化问题。实验结果表明,与八个基线和两个变体相比,所提出的模型具有更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验