Suppr超能文献

通过数字光处理对非化学计量生物陶瓷支架进行合理设计:调整化学成分和孔隙几何形状评估

Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation.

作者信息

Li Yifan, Wu Ronghuan, Yu Li, Shen Miaoda, Ding Xiaoquan, Lu Fengling, Liu Mengtao, Yang Xianyan, Gou Zhongru, Xu Sanzhong

机构信息

Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P. R. China.

Operation Room, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, P. R. China.

出版信息

J Biol Eng. 2021 Jan 6;15(1):1. doi: 10.1186/s13036-020-00252-3.

Abstract

Bioactive ceramics are promising candidates as 3D porous substrates for bone repair in bone regenerative medicine. However, they are often inefficient in clinical applications due to mismatching mechanical properties and compromised biological performances. Herein, the additional Sr dopant is hypothesized to readily adjust the mechanical and biodegradable properties of the dilute Mg-doped wollastonite bioceramic scaffolds with different pore geometries (cylindrical-, cubic-, gyroid-) by ceramic stereolithography. The results indicate that the compressive strength of Mg/Sr co-doped bioceramic scaffolds could be tuned simultaneously by the Sr dopant and pore geometry. The cylindrical-pore scaffolds exhibit strength decay with increasing Sr content, whereas the gyroid-pore scaffolds show increasing strength and Young's modulus as the Sr concentration is increased from 0 to 5%. The ion release could also be adjusted by pore geometry in Tris buffer, and the high Sr content may trigger a faster scaffold bio-dissolution. These results demonstrate that the mechanical strengths of the bioceramic scaffolds can be controlled from the point at which their porous structures are designed. Moreover, scaffold bio-dissolution can be tuned by pore geometry and doping foreign ions. It is reasonable to consider the nonstoichiometric bioceramic scaffolds are promising for bone regeneration, especially when dealing with pathological bone defects.

摘要

生物活性陶瓷作为骨再生医学中用于骨修复的3D多孔支架材料具有广阔前景。然而,由于机械性能不匹配和生物学性能受损,它们在临床应用中往往效率低下。在此,假设额外的Sr掺杂剂能够通过陶瓷立体光刻技术轻松调节具有不同孔隙几何形状(圆柱形、立方体形、类螺旋体形)的稀Mg掺杂硅灰石生物陶瓷支架的机械性能和生物可降解性能。结果表明,Mg/Sr共掺杂生物陶瓷支架的抗压强度可通过Sr掺杂剂和孔隙几何形状同时进行调节。圆柱形孔隙支架的强度随Sr含量增加而衰减,而类螺旋体形孔隙支架在Sr浓度从0增加到5%时,强度和杨氏模量均增加。在Tris缓冲液中,离子释放也可通过孔隙几何形状进行调节,高Sr含量可能会引发更快的支架生物溶解。这些结果表明,生物陶瓷支架的机械强度可以在设计其多孔结构时就得到控制。此外,支架的生物溶解可通过孔隙几何形状和掺杂外来离子进行调节。有理由认为非化学计量比的生物陶瓷支架在骨再生方面具有广阔前景,尤其是在处理病理性骨缺损时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c92/7789156/c7715c72275b/13036_2020_252_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验