Alaghmandfard Amirhossein, Madaah Hosseini Hamid Reza
Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11155-9466, Tehran, Iran.
Appl Nanosci. 2021;11(3):849-860. doi: 10.1007/s13204-020-01642-1. Epub 2021 Jan 3.
In this research, a facile, two-step synthesis of FeO-L-graphene quantum dots (GQDs) nanocomposite is reported. This synthesis method comprises the preparation of GQDs via hydrothermal route, which should be conjugated to the L functionalized core-shell magnetic structure with the core of about 7.5-nm iron oxide nanoparticle and 3.5-nm L shell. L as a biocompatible natural amino acid, was used to link magnetite nanoparticles (MNPs) with GQDs. X-ray powder diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray were used to investigate the presence and formation of MNPs, functionalized MNPs, and final hybrid nanostructure. Morphology and size distribution of nanoparticles were demonstrated by scanning electron microscopy and transmission electron microscopy. Finally, the magnetic and optical properties of the prepared nanocomposite were measured by vibrating sample magnetometer, ultraviolet-visible, and photoluminescence spectroscopy. The results show that FeO-L-GQDs nanocomposite exhibits a superparamagnetic behavior at room temperature with high saturation magnetization and low magnetic coercivity, which are 28.99 emu/g and 0.09 Oe, respectively. This nanocomposite also shows strong and stable emission at 460 nm and 530 nm when it is excited with the 235 nm wavelength. The magnetic GQDs structure also reveals the absorption wavelength at 270 nm. Therefore, FeO-L-GQDs nanocomposite can be considered as a potential multifunctional hybrid structure with magnetic and optical properties simultaneously. This nanocomposite can be used for a wide range of biomedical applications like magnetic resonance imaging (MRI) contrast agents, biosensors, photothermal therapy, and hyperthermia.
本研究报道了一种简便的两步法合成FeO-L-石墨烯量子点(GQDs)纳米复合材料的方法。该合成方法包括通过水热法制备GQDs,然后将其与L功能化的核壳磁性结构共轭,该结构的核为约7.5纳米的氧化铁纳米颗粒,壳为3.5纳米的L壳。L作为一种生物相容性天然氨基酸,用于将磁铁矿纳米颗粒(MNPs)与GQDs连接。采用X射线粉末衍射、傅里叶变换红外光谱、X射线光电子能谱、能量色散X射线等方法研究MNPs、功能化MNPs和最终杂化纳米结构的存在和形成。通过扫描电子显微镜和透射电子显微镜展示了纳米颗粒的形态和尺寸分布。最后,用振动样品磁强计、紫外可见光谱和光致发光光谱测量了所制备纳米复合材料的磁性和光学性质。结果表明,FeO-L-GQDs纳米复合材料在室温下表现出超顺磁性行为,具有高饱和磁化强度和低矫顽力,分别为28.99 emu/g和0.09 Oe。当用235 nm波长激发时,该纳米复合材料在460 nm和530 nm处也表现出强烈而稳定的发射。磁性GQDs结构在270 nm处也显示出吸收波长。因此,FeO-L-GQDs纳米复合材料可被视为一种同时具有磁性和光学性质的潜在多功能杂化结构。这种纳米复合材料可用于广泛应用于生物医学领域,如磁共振成像(MRI)造影剂、生物传感器、光热疗法和热疗。