Suppr超能文献

治愈、生存还是死亡?——使用马尔可夫疾病-死亡模型预测德国未来的疾病负担

Healing, surviving, or dying? - projecting the German future disease burden using a Markov illness-death model.

作者信息

Milan Valeska, Fetzer Stefan, Hagist Christian

机构信息

AOK Baden-Württemberg, Stuttgart / WHU Otto Beisheim School of Management, Burgplatz 2, 56179, Vallendar, Germany.

Hochschule Aalen - Technik und Wirtschaft, Aalen, Germany.

出版信息

BMC Public Health. 2021 Jan 11;21(1):123. doi: 10.1186/s12889-020-09941-6.

Abstract

BACKGROUND

In view of the upcoming demographic transition, there is still no clear evidence on how increasing life expectancy will affect future disease burden, especially regarding specific diseases. In our study, we project the future development of Germany's ten most common non-infectious diseases (arthrosis, coronary heart disease, pulmonary, bronchial and tracheal cancer, chronic obstructive pulmonary disease, cerebrovascular diseases, dementia, depression, diabetes, dorsal pain and heart failure) in a Markov illness-death model with recovery until 2060.

METHODS

The disease-specific input data stem from a consistent data set of a major sickness fund covering about four million people, the demographic components from official population statistics. Using six different scenarios concerning an expansion and a compression of morbidity as well as increasing recovery and effective prevention, we can show the possible future range of disease burden and, by disentangling the effects, reveal the significant differences between the various diseases in interaction with the demographic components.

RESULTS

Our results indicate that, although strongly age-related diseases like dementia or heart failure show the highest relative increase rates, diseases of the musculoskeletal system, such as dorsal pain and arthrosis, still will be responsible for the majority of the German population's future disease burden in 2060, with about 25-27 and 13-15 million patients, respectively. Most importantly, for almost all considered diseases a significant increase in burden of disease can be expected even in case of a compression of morbidity.

CONCLUSION

A massive case-load is emerging on the German health care system, which can only be alleviated by more effective prevention. Immediate action by policy makers and health care managers is needed, as otherwise the prevalence of widespread diseases will become unsustainable from a capacity point-of-view.

摘要

背景

鉴于即将到来的人口结构转变,关于预期寿命的增加将如何影响未来疾病负担,尤其是特定疾病的负担,目前仍没有明确的证据。在我们的研究中,我们在一个具有康复功能的马尔可夫疾病 - 死亡模型中预测了德国十种最常见的非传染性疾病(关节病、冠心病、肺、支气管和气管癌、慢性阻塞性肺疾病、脑血管疾病、痴呆症、抑郁症、糖尿病、背痛和心力衰竭)到2060年的未来发展情况。

方法

特定疾病的输入数据来自一个涵盖约400万人的大型疾病基金的一致数据集,人口统计学成分来自官方人口统计数据。通过使用六种不同的情景,涉及发病率的扩大和压缩以及康复和有效预防的增加,我们可以展示未来疾病负担的可能范围,并通过分解这些影响,揭示各种疾病在与人口统计学成分相互作用时的显著差异。

结果

我们的结果表明,尽管痴呆症或心力衰竭等与年龄密切相关的疾病显示出最高的相对增长率,但肌肉骨骼系统疾病,如背痛和关节病,在2060年仍将是德国未来疾病负担的主要原因,患者人数分别约为2500万至2700万和1300万至1500万。最重要的是,即使在发病率压缩的情况下,几乎所有考虑的疾病的疾病负担预计也会显著增加。

结论

德国医疗保健系统正在面临巨大的病例负担,只有通过更有效的预防才能缓解。政策制定者和医疗保健管理者需要立即采取行动,否则从能力角度来看,广泛疾病的患病率将变得不可持续。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f52/7802236/ebacf7da1721/12889_2020_9941_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验