Suppr超能文献

用四项选择的人格问卷检测虚假良好反应模式。

Detecting faking-good response style in personality questionnaires with four choice alternatives.

机构信息

Department of General Psychology, University of Padova, Padua, Italy.

Department of Neuroscience, Imaging and Clinical Sciences, University "G.d'Annunzio", Chieti, Pescara, Italy.

出版信息

Psychol Res. 2021 Nov;85(8):3094-3107. doi: 10.1007/s00426-020-01473-3. Epub 2021 Jan 16.

Abstract

Deliberate attempts to portray oneself in an unrealistic manner are commonly encountered in the administration of personality questionnaires. The main aim of the present study was to explore whether mouse tracking temporal indicators and machine learning models could improve the detection of subjects implementing a faking-good response style when answering personality inventories with four choice alternatives, with and without time pressure. A total of 120 volunteers were randomly assigned to one of four experimental groups and asked to respond to the Virtuous Responding (VR) validity scale of the PPI-R and the Positive Impression Management (PIM) validity scale of the PAI via a computer mouse. A mixed design was implemented, and predictive models were calculated. The results showed that, on the PIM scale, faking-good participants were significantly slower in responding than honest respondents. Relative to VR items, PIM items are shorter in length and feature no negations. Accordingly, the PIM scale was found to be more sensitive in distinguishing between honest and faking-good respondents, demonstrating high classification accuracy (80-83%).

摘要

在人格问卷的管理中,人们常常会故意以不切实际的方式描述自己。本研究的主要目的是探讨在使用四选一的人格量表时,是否可以通过鼠标跟踪的时间指标和机器学习模型来提高对受测者实施伪装良好反应模式的检测能力,同时还考虑了是否存在时间压力。共有 120 名志愿者被随机分配到四个实验组中的一个,并要求通过计算机鼠标回答 PPI-R 的 VR 效度量表和 PAI 的 PIM 效度量表。采用混合设计并计算预测模型。结果表明,在 PIM 量表上,伪装良好的参与者的反应速度明显慢于诚实的参与者。与 VR 项目相比,PIM 项目的长度更短,并且没有否定。因此,PIM 量表在区分诚实和伪装良好的参与者方面更敏感,表现出较高的分类准确性(80-83%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1d/8476468/9d8de3499d3a/426_2020_1473_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验