Suppr超能文献

基于等离子体激元诱导热电子-分子相互作用的片上超灵敏快速氢传感

On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron-molecule interaction.

作者信息

Wen Long, Sun Zhiwei, Zheng Qilin, Nan Xianghong, Lou Zaizhu, Liu Zhong, Cumming David R S, Li Baojun, Chen Qin

机构信息

Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.

College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.

出版信息

Light Sci Appl. 2023 Mar 21;12(1):76. doi: 10.1038/s41377-023-01123-4.

Abstract

Hydrogen energy is a zero-carbon replacement for fossil fuels. However, hydrogen is highly flammable and explosive hence timely sensitive leak detection is crucial. Existing optical sensing techniques rely on complex instruments, while electrical sensing techniques usually operate at high temperatures and biasing condition. In this paper an on-chip plasmonic-catalytic hydrogen sensing concept with a concentration detection limit down to 1 ppm is presented that is based on a metal-insulator-semiconductor (MIS) nanojunction operating at room temperature and zero bias. The sensing signal of the device was enhanced by three orders of magnitude at a one-order of magnitude higher response speed compared to alternative non-plasmonic devices. The excellent performance is attributed to the hydrogen induced interfacial dipole charge layer and the associated plasmonic hot electron modulated photoelectric response. Excellent agreements were achieved between experiment and theoretical calculations based on a quantum tunneling model. Such an on-chip combination of plasmonic optics, photoelectric detection and photocatalysis offers promising strategies for next-generation optical gas sensors that require high sensitivity, low time delay, low cost, high portability and flexibility.

摘要

氢能是化石燃料的零碳替代品。然而,氢气具有高度易燃性和爆炸性,因此及时进行灵敏的泄漏检测至关重要。现有的光学传感技术依赖于复杂的仪器,而电传感技术通常在高温和偏置条件下运行。本文提出了一种片上等离子体催化氢传感概念,其浓度检测限低至1 ppm,基于在室温及零偏置下运行的金属-绝缘体-半导体(MIS)纳米结。与其他非等离子体器件相比,该器件的传感信号在响应速度提高一个数量级的情况下增强了三个数量级。优异的性能归因于氢诱导的界面偶极电荷层以及相关的等离子体热电子调制光电响应。基于量子隧穿模型的实验与理论计算之间取得了极好的一致性。这种等离子体光学学、光电检测和光催化的片上组合为下一代需要高灵敏度、低时延、低成本、高便携性和灵活性的光学气体传感器提供了有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5933/10030554/18e18942de2d/41377_2023_1123_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验