Suppr超能文献

全自动 3D 超声胎盘、羊水和胎儿分割在早期妊娠评估中的应用。

Fully Automated 3-D Ultrasound Segmentation of the Placenta, Amniotic Fluid, and Fetus for Early Pregnancy Assessment.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2038-2047. doi: 10.1109/TUFFC.2021.3052143. Epub 2021 May 25.

Abstract

Volumetric placental measurement using 3-D ultrasound has proven clinical utility in predicting adverse pregnancy outcomes. However, this metric cannot currently be employed as part of a screening test due to a lack of robust and real-time segmentation tools. We present a multiclass (MC) convolutional neural network (CNN) developed to segment the placenta, amniotic fluid, and fetus. The ground-truth data set consisted of 2093 labeled placental volumes augmented by 300 volumes with placenta, amniotic fluid, and fetus annotated. A two-pathway, hybrid (HB) model using transfer learning, a modified loss function, and exponential average weighting was developed and demonstrated the best performance for placental segmentation (PS), achieving a Dice similarity coefficient (DSC) of 0.84- and 0.38-mm average Hausdorff distances (HDAV). The use of a dual-pathway architecture improved the PS by 0.03 DSC and reduced HDAV by 0.27 mm compared with a naïve MC model. The incorporation of exponential weighting produced a further small improvement in DSC by 0.01 and a reduction of HDAV by 0.44 mm. Per volume inference using the FCNN took 7-8 s. This method should enable clinically relevant morphometric measurements (such as volume and total surface area) to be automatically generated for the placenta, amniotic fluid, and fetus. The ready availability of such metrics makes a population-based screening test for adverse pregnancy outcomes possible.

摘要

三维超声容积胎盘测量已被证明在预测不良妊娠结局方面具有临床应用价值。然而,由于缺乏强大且实时的分割工具,该指标目前无法作为筛查试验的一部分。我们提出了一种多类(MC)卷积神经网络(CNN),用于分割胎盘、羊水和胎儿。真实数据集由 2093 个标记的胎盘体积组成,通过 300 个具有胎盘、羊水和胎儿注释的体积进行扩充。采用基于迁移学习、改进的损失函数和指数平均加权的双通道混合(HB)模型进行了开发和演示,该模型在胎盘分割(PS)方面表现出最佳性能,达到了 0.84-0.38 毫米平均 Hausdorff 距离(HDAV)的 Dice 相似系数(DSC)。与天真的 MC 模型相比,双通道架构的使用将 PS 提高了 0.03 DSC,将 HDAV 降低了 0.27 毫米。指数加权的使用进一步将 DSC 提高了 0.01,将 HDAV 降低了 0.44 毫米。使用 FCNN 进行每体积推断需要 7-8 秒。该方法应能够自动生成胎盘、羊水和胎儿的相关形态测量值(如体积和总表面积)。此类指标的广泛应用使得基于人群的不良妊娠结局筛查试验成为可能。

相似文献

引用本文的文献

1
Reference charts for first-trimester placental volume derived using OxNNet.使用OxNNet得出的孕早期胎盘体积参考图表。
Ultrasound Obstet Gynecol. 2025 Sep;66(3):337-346. doi: 10.1002/uog.29300. Epub 2025 Aug 1.
4
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.用于从三维超声图像中分割胎盘的交互式分割模型
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.

本文引用的文献

5
Towards Automated Semantic Segmentation in Prenatal Volumetric Ultrasound.面向产前容积超声的自动语义分割。
IEEE Trans Med Imaging. 2019 Jan;38(1):180-193. doi: 10.1109/TMI.2018.2858779. Epub 2018 Jul 23.
8
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验