IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2038-2047. doi: 10.1109/TUFFC.2021.3052143. Epub 2021 May 25.
Volumetric placental measurement using 3-D ultrasound has proven clinical utility in predicting adverse pregnancy outcomes. However, this metric cannot currently be employed as part of a screening test due to a lack of robust and real-time segmentation tools. We present a multiclass (MC) convolutional neural network (CNN) developed to segment the placenta, amniotic fluid, and fetus. The ground-truth data set consisted of 2093 labeled placental volumes augmented by 300 volumes with placenta, amniotic fluid, and fetus annotated. A two-pathway, hybrid (HB) model using transfer learning, a modified loss function, and exponential average weighting was developed and demonstrated the best performance for placental segmentation (PS), achieving a Dice similarity coefficient (DSC) of 0.84- and 0.38-mm average Hausdorff distances (HDAV). The use of a dual-pathway architecture improved the PS by 0.03 DSC and reduced HDAV by 0.27 mm compared with a naïve MC model. The incorporation of exponential weighting produced a further small improvement in DSC by 0.01 and a reduction of HDAV by 0.44 mm. Per volume inference using the FCNN took 7-8 s. This method should enable clinically relevant morphometric measurements (such as volume and total surface area) to be automatically generated for the placenta, amniotic fluid, and fetus. The ready availability of such metrics makes a population-based screening test for adverse pregnancy outcomes possible.
三维超声容积胎盘测量已被证明在预测不良妊娠结局方面具有临床应用价值。然而,由于缺乏强大且实时的分割工具,该指标目前无法作为筛查试验的一部分。我们提出了一种多类(MC)卷积神经网络(CNN),用于分割胎盘、羊水和胎儿。真实数据集由 2093 个标记的胎盘体积组成,通过 300 个具有胎盘、羊水和胎儿注释的体积进行扩充。采用基于迁移学习、改进的损失函数和指数平均加权的双通道混合(HB)模型进行了开发和演示,该模型在胎盘分割(PS)方面表现出最佳性能,达到了 0.84-0.38 毫米平均 Hausdorff 距离(HDAV)的 Dice 相似系数(DSC)。与天真的 MC 模型相比,双通道架构的使用将 PS 提高了 0.03 DSC,将 HDAV 降低了 0.27 毫米。指数加权的使用进一步将 DSC 提高了 0.01,将 HDAV 降低了 0.44 毫米。使用 FCNN 进行每体积推断需要 7-8 秒。该方法应能够自动生成胎盘、羊水和胎儿的相关形态测量值(如体积和总表面积)。此类指标的广泛应用使得基于人群的不良妊娠结局筛查试验成为可能。