Ross Tilley Burn Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Isfahan 81746-73461, Iran.
ACS Biomater Sci Eng. 2020 Jan 13;6(1):505-516. doi: 10.1021/acsbiomaterials.9b00861. Epub 2019 Dec 9.
Wound healing is vital for patients with complex wounds including burns. While the gold standard of skin transplantation ensures a surgical treatment to heal wounds, it has its limitations, for example, insufficient donor sites for patients with large burn wounds and creation of wounds and pain when harvesting the donor skin. Therefore, tissue-engineered skin is of paramount importance. The aim of this study is to investigate and characterize an elastomeric acellular scaffold that would demonstrate the ability to promote skin regeneration. A hybrid gelatin-based electrospun scaffold is fabricated via the use of biodegradable polycarbonate polyurethane (PU). It is hypothesized that the addition of PU would enable a tailored degradation rate and an enhanced mechanical strength of electrospun gelatin. Introducing 20% PU to gelatin scaffolds (Gel80-PU20) results in a significant increase in the degradation resistance, yield strength, and elongation of these scaffolds without altering the cell viability. In vivo studies using a mouse excisional wound biopsy grafted with the scaffolds reveals that the Gel80-PU20 scaffold enables greater cell infiltration than clinically established matrices, for example, Integra (dermal regeneration matrix, DRM), a benchmark scaffold. Immunostaining shows fewer macrophages and myofibroblastic cells on the Gel80-PU20 scaffold when compared with the DRM. The findings show that electrospun Gel80-PU20 scaffolds hold potential for generating tissue substitutes and overcoming some limitations of conventional wound care matrices.
伤口愈合对于包括烧伤在内的复杂伤口患者至关重要。虽然皮肤移植的金标准确保了一种手术治疗方法来治愈伤口,但它也有其局限性,例如对于大面积烧伤患者,供体部位不足,以及在采集供体皮肤时会造成伤口和疼痛。因此,组织工程皮肤至关重要。本研究旨在研究和表征一种弹性细胞外支架,该支架具有促进皮肤再生的能力。通过使用可生物降解的聚碳酸酯聚氨酯(PU)来制造基于明胶的混合电纺支架。假设添加 PU 将使电纺明胶具有可定制的降解率和增强的机械强度。将 20%的 PU 引入明胶支架(Gel80-PU20)会显著增加这些支架的降解阻力、屈服强度和伸长率,而不会改变细胞活力。体内研究使用移植有支架的小鼠切创活检揭示,与临床中常用的基质(例如 Integra(真皮再生基质,DRM)等基准支架)相比,Gel80-PU20 支架可实现更大的细胞浸润。免疫染色显示,与 DRM 相比,Gel80-PU20 支架上的巨噬细胞和肌成纤维细胞较少。研究结果表明,电纺 Gel80-PU20 支架具有生成组织替代物的潜力,并克服了传统伤口护理基质的一些局限性。