Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603203, India.
J Mater Sci Mater Med. 2021 Jan 20;32(1):5. doi: 10.1007/s10856-020-06478-3.
Bone is a flexible and electro active tissue that is vulnerable to various traumatic injuries. The self-healing of damaged bone tissue towards reconstruction is limited due to the lack of proper niche compliances. Nevertheless, the classical grafting techniques like autograft/allograft for bone repair pose challenges like bacterial infections and donor-site morbidity with unsatisfactory outcomes. The use of appropriate biomaterial with osteogenic potential can meet these challenges. In this regard, bioactive glass ceramics is widely used as a bone filler or graft material because of its bonding affinity to bone leading towards bone reconstruction applications without the challenge of post implant infections. Hence, the current study is aimed at addressing this potentiality of zinc (Zn) for doped the bioglass at nano-scale advantages for bone tissue repair. Since, Zn has been demonstrated to have not only antibacterial property but also the stimulatory effect on osteoblasts differentiation, mineralization by enhancing the osteogenic genes expression. In view of these, the present study is focused on sol-gel synthesis and pysico-chemical characterization of Zinc-doped bioglass nanoparticles (Zn-nBGC) and also analyzing its biological implications. The surface morphological and physiochemical characterizations using SEM, EDX, FT-IR and XRD analysis has shown the increased surface area of Zn-nBGC particles providing a great platform for biomolecular interaction, cytocompatibility, cell proliferation and osteogenic differentiation. The obtaining hydroxy apatite groups have initiated in vitro mineralization towards osteogenic lineage formation. Zn has not only involved in enhancing cellular actions but also strengthen the ceramic nanoparticles towards antibacterial application. Hence the finding suggests a biomaterial synthesis of better biomaterial for bone tissue engineering application by preventing post-operative bacterial infection.
骨骼是一种灵活且具有电活性的组织,容易受到各种创伤损伤。由于缺乏适当的龛位顺应性,受损骨组织的自我修复能力有限,无法进行重建。然而,经典的骨修复移植技术,如自体/同种异体移植,存在细菌感染和供体部位发病率等挑战,且效果并不理想。使用具有成骨潜力的合适生物材料可以应对这些挑战。在这方面,生物活性玻璃陶瓷被广泛用作骨填充剂或移植物材料,因为它与骨骼具有结合亲和力,可用于骨重建应用,而不会面临植入后感染的挑战。因此,目前的研究旨在探讨锌(Zn)在纳米尺度上掺杂生物玻璃的潜力,以用于骨组织修复。由于锌不仅具有抗菌特性,而且还通过增强成骨基因表达来刺激成骨细胞分化和矿化。有鉴于此,本研究专注于锌掺杂生物玻璃纳米粒子(Zn-nBGC)的溶胶-凝胶合成和物理化学特性分析,并分析其生物学意义。使用 SEM、EDX、FT-IR 和 XRD 分析进行的表面形态和物理化学特性表明,Zn-nBGC 颗粒的表面积增加,为生物分子相互作用、细胞相容性、细胞增殖和成骨分化提供了良好的平台。体外矿化已经产生了羟基磷灰石基团,从而促进了成骨系的形成。Zn 不仅参与增强细胞作用,而且还增强了陶瓷纳米粒子的抗菌应用。因此,该研究结果表明,通过防止术后细菌感染,这种生物材料的合成可用于更好的骨组织工程应用。