Suppr超能文献

个性化全基因组代谢模型鉴定辐射抗性肿瘤中氧化还原代谢的靶点。

Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.

Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

出版信息

Cell Syst. 2021 Jan 20;12(1):68-81.e11. doi: 10.1016/j.cels.2020.12.001.

Abstract

Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and HO clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.

摘要

氧化还原辅助因子的产生对于抗氧化生成、清除活性氧物质以及肿瘤对电离辐射治疗的整体反应至关重要。为了确定赋予肿瘤对放射治疗抗性的氧化还原代谢系统水平的改变,我们开发了一种生物信息学管道,将多组学数据整合到 716 个辐射敏感和 199 个辐射抗性肿瘤的个性化基因组规模通量平衡分析模型中。这些模型共同预测,辐射抗性肿瘤重新分配代谢通量以增加线粒体 NADPH 储存和清除活性氧物质 (ROS)。模拟的全基因组敲除筛选与匹配的辐射敏感和辐射抗性癌细胞系中的实验 siRNA 基因敲低一致,揭示了涉及线粒体 NADPH 产生、中心碳代谢和叶酸代谢的基因靶点,这些靶点允许选择性抑制辐射抗性癌症中的谷胱甘肽产生和 HO 清除。这种系统方法代表了在开发氧化还原代谢的定量基因组规模模型和确定个性化代谢靶标以提高个体癌症患者的放射敏感性方面的重大进展。

相似文献

引用本文的文献

3
Proteome-wide copy-number estimation from transcriptomics.基于转录组学的蛋白质组拷贝数估计。
Mol Syst Biol. 2024 Nov;20(11):1230-1256. doi: 10.1038/s44320-024-00064-3. Epub 2024 Sep 27.

本文引用的文献

1
Dietary modifications for enhanced cancer therapy.饮食调整以增强癌症治疗效果。
Nature. 2020 Mar;579(7800):507-517. doi: 10.1038/s41586-020-2124-0. Epub 2020 Mar 25.
8
Targeting NAD Metabolism to Enhance Radiation Therapy Responses.靶向 NAD 代谢以增强放射治疗反应。
Semin Radiat Oncol. 2019 Jan;29(1):6-15. doi: 10.1016/j.semradonc.2018.10.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验