The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
Cell Syst. 2021 Jan 20;12(1):68-81.e11. doi: 10.1016/j.cels.2020.12.001.
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and HO clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
氧化还原辅助因子的产生对于抗氧化生成、清除活性氧物质以及肿瘤对电离辐射治疗的整体反应至关重要。为了确定赋予肿瘤对放射治疗抗性的氧化还原代谢系统水平的改变,我们开发了一种生物信息学管道,将多组学数据整合到 716 个辐射敏感和 199 个辐射抗性肿瘤的个性化基因组规模通量平衡分析模型中。这些模型共同预测,辐射抗性肿瘤重新分配代谢通量以增加线粒体 NADPH 储存和清除活性氧物质 (ROS)。模拟的全基因组敲除筛选与匹配的辐射敏感和辐射抗性癌细胞系中的实验 siRNA 基因敲低一致,揭示了涉及线粒体 NADPH 产生、中心碳代谢和叶酸代谢的基因靶点,这些靶点允许选择性抑制辐射抗性癌症中的谷胱甘肽产生和 HO 清除。这种系统方法代表了在开发氧化还原代谢的定量基因组规模模型和确定个性化代谢靶标以提高个体癌症患者的放射敏感性方面的重大进展。