Southgate Institute for Health, Society and Equity, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia.
Department of Theoretical Philosophy, University of Groningen, Oude Boteringestraat 52, Groningen 9712GL, The Netherlands.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190750. doi: 10.1098/rstb.2019.0750. Epub 2021 Jan 25.
The premise of this two-part theme issue is simple: the cognitive sciences should join the rest of the life sciences in how they approach the quarry within their research domain. Specifically, understanding how organisms on the lower branches of the phylogenetic tree become familiar with, value and exploit elements of an ecological niche while avoiding harm can be expected to aid understanding of how organisms that evolved later (including ) do the same or similar things. We call this approach basal cognition. In this introductory essay, we explain what the approach involves. Because no definition of cognition exists that reflects its biological basis, we advance a working definition that can be operationalized; introduce a behaviour-generating toolkit of capacities that comprise the function (e.g. sensing/perception, memory, valence, learning, decision making, communication), each element of which can be studied relatively independently; and identify a (necessarily incomplete) suite of common biophysical mechanisms found throughout the domains of life involved in implementing the toolkit. The articles in this collection illuminate different aspects of basal cognition across different forms of biological organization, from prokaryotes and single-celled eukaryotes-the focus of Part 1-to plants and finally to animals, without and with nervous systems, the focus of Part 2. By showcasing work in diverse, currently disconnected fields, we hope to sketch the outline of a new multidisciplinary approach for comprehending cognition, arguably the most fascinating and hard-to-fathom evolved function on this planet. Doing so has the potential to shed light on problems in a wide variety of research domains, including microbiology, immunology, zoology, biophysics, botany, developmental biology, neurobiology/science, regenerative medicine, computational biology, artificial life and synthetic bioengineering. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
认知科学应该与生命科学的其他领域合作,共同研究它们的研究领域内的课题。具体来说,了解进化树上较低分支的生物体如何熟悉、重视和利用生态位的元素,同时避免受到伤害,有望帮助我们理解进化较晚的生物体(包括人类)如何做同样或类似的事情。我们称这种方法为基础认知。在这篇介绍性文章中,我们将解释这种方法所涉及的内容。由于没有一个反映其生物学基础的认知定义,我们提出了一个可操作的工作定义;引入了一个由能力组成的行为生成工具包,这些能力包括感知/知觉、记忆、价值、学习、决策、沟通等,每个元素都可以相对独立地进行研究;并确定了在涉及实施工具包的生命领域中发现的一套常见的生物物理机制(必要时不完整)。本集文章从原核生物和单细胞真核生物(第 1 部分的重点)到植物,最后到动物,展示了不同形式的生物组织中的基础认知的不同方面,这些动物包括无神经系统和有神经系统的动物。通过展示不同、目前相互孤立的领域的工作,我们希望勾勒出一种新的多学科方法来理解认知,这可能是这个星球上最迷人、最难理解的进化功能。这样做有可能为包括微生物学、免疫学、动物学、生物物理学、植物学、发育生物学、神经生物学/科学、再生医学、计算生物学、人工生命和合成生物工程在内的广泛的研究领域的问题提供一些启示。本文是主题为“基础认知:概念工具与单细胞视角”的一部分。