Mærsk McKinney Møller Institute, University of Southern Denmark, Denmark.
Department of Mathematics, Institut Teknologi Sepuluh Nopember, Indonesia.
ISA Trans. 2022 May;124:135-143. doi: 10.1016/j.isatra.2021.01.028. Epub 2021 Jan 20.
This paper presents a data-driven approach for COVID-19 modeling and forecasting, which can be used by public policy and decision makers to control the outbreak through Non-Pharmaceutical Interventions (NPI). First, we apply an extended Kalman filter (EKF) to a discrete-time stochastic augmented compartmental model to estimate the time-varying effective reproduction number (R). We use daily confirmed cases, active cases, recovered cases, deceased cases, Case-Fatality-Rate (CFR), and infectious time as inputs for the model. Furthermore, we define a Transmission Index (TI) as a ratio between the instantaneous and the maximum value of the effective reproduction number. The value of TI indicates the "effectiveness" of the disease transmission from a contact between a susceptible and an infectious individual in the presence of current measures, such as physical distancing and lock-down, relative to a normal condition. Based on the value of TI, we forecast different scenarios to see the effect of relaxing and tightening public measures. Case studies in three countries are provided to show the practicability of our approach.
本文提出了一种基于数据驱动的 COVID-19 建模和预测方法,可供公共政策制定者和决策者使用,通过非药物干预(NPI)来控制疫情的爆发。首先,我们应用扩展卡尔曼滤波器(EKF)对离散时间随机扩充房室模型进行了拟合,以估计时变有效繁殖数(R)。我们使用每日确诊病例、活跃病例、康复病例、死亡病例、病死率(CFR)和感染时间作为模型的输入。此外,我们定义了一个传播指数(TI),作为有效繁殖数的瞬时值与最大值的比值。TI 的值表示在当前措施(如物理隔离和封锁)存在的情况下,易感者和感染者之间接触的疾病传播的“有效性”,相对于正常情况。根据 TI 的值,我们预测了不同的场景,以观察放松和收紧公共措施的效果。提供了三个国家的案例研究,以展示我们方法的实用性。