基于对比增强磁共振成像的影像组学衍生数据在结直肠癌肝转移RAS突变检测中的应用

Radiomics-Derived Data by Contrast Enhanced Magnetic Resonance in RAS Mutations Detection in Colorectal Liver Metastases.

作者信息

Granata Vincenza, Fusco Roberta, Avallone Antonio, De Stefano Alfonso, Ottaiano Alessandro, Sbordone Carolina, Brunese Luca, Izzo Francesco, Petrillo Antonella

机构信息

Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy.

Abdominal Oncology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy.

出版信息

Cancers (Basel). 2021 Jan 25;13(3):453. doi: 10.3390/cancers13030453.

Abstract

: To assess the association of RAS mutation status and radiomics-derived data by Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. : 76 patients (36 women and 40 men; 59 years of mean age and 36-80 years as range) were included in this retrospective study. Texture metrics and parameters based on lesion morphology were calculated. Per-patient univariate and multivariate analysis were made. Wilcoxon-Mann-Whitney U test, receiver operating characteristic (ROC) analysis, pattern recognition approaches with features selection approaches were considered. : Significant results were obtained for texture features while morphological parameters had not significant results to classify RAS mutation. The results showed that using a univariate analysis was not possible to discriminate accurately the RAS mutation status. Instead, considering a multivariate analysis and classification approaches, a KNN exclusively with texture parameters as predictors reached the best results (AUC of 0.84 and an accuracy of 76.9% with 90.0% of sensitivity and 67.8% of specificity on training set and an accuracy of 87.5% with 91.7% of sensitivity and 83.3% of specificity on external validation cohort). : Texture parameters derived by CE-MRI and combined using multivariate analysis and patter recognition approaches could allow stratifying the patients according to RAS mutation status.

摘要

评估在肝转移瘤中,通过对比增强磁共振成像(CE-MRI)获得的RAS突变状态与影像组学衍生数据之间的关联。本回顾性研究纳入了76例患者(36名女性和40名男性;平均年龄59岁,年龄范围36 - 80岁)。计算基于病变形态的纹理指标和参数。进行了患者个体的单因素和多因素分析。考虑了Wilcoxon-Mann-Whitney U检验、受试者操作特征(ROC)分析以及带有特征选择方法的模式识别方法。纹理特征取得了显著结果,而形态学参数对RAS突变分类无显著结果。结果表明,采用单因素分析无法准确区分RAS突变状态。相反,考虑多因素分析和分类方法时,仅以纹理参数作为预测因子的KNN取得了最佳结果(训练集上的AUC为0.84,准确率为76.9%,灵敏度为90.0%,特异度为67.8%;外部验证队列上的准确率为87.5%,灵敏度为91.7%,特异度为83.3%)。通过CE-MRI获得并使用多因素分析和模式识别方法组合的纹理参数能够根据RAS突变状态对患者进行分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c09/7865653/216b1828d0d9/cancers-13-00453-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索