Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Neuroscience Center, Samsung Medical Center, Seoul, Korea.
J Alzheimers Dis. 2021;80(1):143-157. doi: 10.3233/JAD-201092.
Amyloid-β (Aβ) evaluation in amnestic mild cognitive impairment (aMCI) patients is important for predicting conversion to Alzheimer's disease. However, Aβ evaluation through Aβ positron emission tomography (PET) is limited due to high cost and safety issues.
We therefore aimed to develop and validate prediction models of Aβ positivity for aMCI using optimal interpretable machine learning (ML) approaches utilizing multimodal markers.
We recruited 529 aMCI patients from multiple centers who underwent Aβ PET. We trained ML algorithms using a training cohort (324 aMCI from Samsung medical center) with two-phase modelling: model 1 included age, gender, education, diabetes, hypertension, apolipoprotein E genotype, and neuropsychological test scores; model 2 included the same variables as model 1 with additional MRI features. We used four-fold cross-validation during the modelling and evaluated the models on an external validation cohort (187 aMCI from the other centers).
Model 1 showed good accuracy (area under the receiver operating characteristic curve [AUROC] 0.837) in cross-validation, and fair accuracy (AUROC 0.765) in external validation. Model 2 led to improvement in the prediction performance with good accuracy (AUROC 0.892) in cross validation compared to model 1. Apolipoprotein E genotype, delayed recall task scores, and interaction between cortical thickness in the temporal region and hippocampal volume were the most important predictors of Aβ positivity.
Our results suggest that ML models are effective in predicting Aβ positivity at the individual level and could help the biomarker-guided diagnosis of prodromal AD.
在遗忘型轻度认知障碍(aMCI)患者中评估淀粉样蛋白-β(Aβ)对于预测向阿尔茨海默病的转化很重要。然而,由于成本高和安全问题,通过 Aβ 正电子发射断层扫描(PET)进行 Aβ 评估受到限制。
因此,我们旨在使用最优可解释的机器学习(ML)方法开发和验证使用多模态标志物的 aMCI 患者 Aβ 阳性的预测模型。
我们从多个中心招募了 529 名接受 Aβ PET 的 aMCI 患者。我们使用两阶段建模方法在训练队列(来自三星医疗中心的 324 名 aMCI)中训练 ML 算法:模型 1 包括年龄、性别、教育、糖尿病、高血压、载脂蛋白 E 基因型和神经心理学测试分数;模型 2 包括与模型 1 相同的变量,以及额外的 MRI 特征。我们在建模过程中使用了四折交叉验证,并在外部验证队列(来自其他中心的 187 名 aMCI)上评估了模型。
模型 1 在交叉验证中表现出良好的准确性(AUROC 0.837),在外部验证中表现出中等的准确性(AUROC 0.765)。与模型 1 相比,模型 2 通过改善预测性能,在交叉验证中表现出良好的准确性(AUROC 0.892)。载脂蛋白 E 基因型、延迟回忆任务分数以及颞叶皮质厚度与海马体积之间的相互作用是 Aβ 阳性的最重要预测因素。
我们的研究结果表明,ML 模型在个体水平上预测 Aβ 阳性是有效的,并且可以帮助进行生物标志物指导的前驱 AD 诊断。