Suppr超能文献

准确评估β-淀粉样蛋白阳性率以识别前驱性阿尔茨海默病:实用算法的交叉验证研究。

Accurate risk estimation of β-amyloid positivity to identify prodromal Alzheimer's disease: Cross-validation study of practical algorithms.

机构信息

Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden.

Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.

出版信息

Alzheimers Dement. 2019 Feb;15(2):194-204. doi: 10.1016/j.jalz.2018.08.014. Epub 2018 Oct 23.

Abstract

INTRODUCTION

The aim was to create readily available algorithms that estimate the individual risk of β-amyloid (Aβ) positivity.

METHODS

The algorithms were tested in BioFINDER (n = 391, subjective cognitive decline or mild cognitive impairment) and validated in Alzheimer's Disease Neuroimaging Initiative (n = 661, subjective cognitive decline or mild cognitive impairment). The examined predictors of Aβ status were demographics; cognitive tests; white matter lesions; apolipoprotein E (APOE); and plasma Aβ/Aβ, tau, and neurofilament light.

RESULTS

Aβ status was accurately estimated in BioFINDER using age, 10-word delayed recall or Mini-Mental State Examination, and APOE (area under the receiver operating characteristics curve = 0.81 [0.77-0.85] to 0.83 [0.79-0.87]). When validated, the models performed almost identical in Alzheimer's Disease Neuroimaging Initiative (area under the receiver operating characteristics curve = 0.80-0.82) and within different age, subjective cognitive decline, and mild cognitive impairment populations. Plasma Aβ/Aβ improved the models slightly.

DISCUSSION

The algorithms are implemented on http://amyloidrisk.com where the individual probability of being Aβ positive can be calculated. This is useful in the workup of prodromal Alzheimer's disease and can reduce the number needed to screen in Alzheimer's disease trials.

摘要

简介

目的是创建能够估算β-淀粉样蛋白(Aβ)阳性个体风险的易于使用的算法。

方法

在 BioFINDER 中(n=391,主观认知下降或轻度认知障碍)对算法进行测试,并在 Alzheimer's Disease Neuroimaging Initiative 中(n=661,主观认知下降或轻度认知障碍)进行验证。对 Aβ状态的检查预测因素有:人口统计学;认知测试;白质病变;载脂蛋白 E(APOE);以及血浆 Aβ/Aβ、tau 和神经丝轻链。

结果

在 BioFINDER 中,使用年龄、10 字延迟回忆或简易精神状态检查和 APOE(接受者操作特征曲线下面积为 0.81 [0.77-0.85]至 0.83 [0.79-0.87])可以准确估计 Aβ状态。在验证时,模型在 Alzheimer's Disease Neuroimaging Initiative 中的表现几乎相同(接受者操作特征曲线下面积=0.80-0.82),并且在不同的年龄、主观认知下降和轻度认知障碍人群中也表现相似。血浆 Aβ/Aβ略微改善了模型。

讨论

该算法已在 http://amyloidrisk.com 上实现,可在此处计算个体出现 Aβ阳性的概率。这对于前驱性阿尔茨海默病的检查非常有用,并可以减少阿尔茨海默病试验中的筛查人数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1820/6374284/541c9c0825b4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验