Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
Nat Chem. 2021 Mar;13(3):231-235. doi: 10.1038/s41557-020-00628-4. Epub 2021 Feb 1.
New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels-Alder reaction. The artificial metalloenzyme achieves >10 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/K = 2.9 × 10 M) that exceeds all previously characterized Diels-Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels-Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.
新的酶催化剂通常通过重新利用天然蛋白质的活性位点来设计。在这里,我们表明设计和定向进化可以用来将一种非天然的、功能上幼稚的锌结合蛋白转化为一种高度活跃的非生物杂 Diels-Alder 反应催化剂。人工金属酶每个活性位点的转化率超过 10 次,对反应途径和产物立体化学具有绝对的控制,并表现出超过所有以前表征的 Diels-Alderase 的催化效率(1/K = 2.9 × 10^M)。这些特性利用了有效的路易斯酸催化,这是一种在实验室中常见但在自然界中尚不清楚的加速 Diels-Alder 反应的化学策略。将这种方法扩展到其他金属离子和其他从头开始的支架可能会推动设计领域朝着令人兴奋的新方向发展。