Suppr超能文献

开发和验证用于估计 COVID-19 住院患者死亡概率的临床预测模型:来自全国性数据库的见解。

Development and validation of clinical prediction model to estimate the probability of death in hospitalized patients with COVID-19: Insights from a nationwide database.

机构信息

Department of Cardiology, Nişantaşı University & Hisar Intercontinental Hospital, Istanbul, Turkey.

Department of Biostatistics, Ataturk University, Medical School, Erzurum, Turkey.

出版信息

J Med Virol. 2021 May;93(5):3015-3022. doi: 10.1002/jmv.26844. Epub 2021 Feb 10.

Abstract

In the current study, we aimed to develop and validate a model, based on our nationwide centralized coronavirus disease 2019 (COVID-19) database for predicting death. We conducted an observational study (CORONATION-TR registry). All patients hospitalized with COVID-19 in Turkey between March 11 and June 22, 2020 were included. We developed the model and validated both temporal and geographical models. Model performances were assessed by area under the curve-receiver operating characteristic (AUC-ROC or c-index), R , and calibration plots. The study population comprised a total of 60,980 hospitalized COVID-19 patients. Of these patients, 7688 (13%) were transferred to intensive care unit, 4867 patients (8.0%) required mechanical ventilation, and 2682 patients (4.0%) died. Advanced age, increased levels of lactate dehydrogenase, C-reactive protein, neutrophil-lymphocyte ratio, creatinine, albumine, and D-dimer levels, and pneumonia on computed tomography, diabetes mellitus, and heart failure status at admission were found to be the strongest predictors of death at 30 days in the multivariable logistic regression model (area under the curve-receiver operating characteristic = 0.942; 95% confidence interval: 0.939-0.945; R  = .457). There were also favorable temporal and geographic validations. We developed and validated the prediction model to identify in-hospital deaths in all hospitalized COVID-19 patients. Our model achieved reasonable performances in both temporal and geographic validations.

摘要

在目前的研究中,我们旨在开发和验证一个模型,该模型基于我们全国性的冠状病毒疾病 2019(COVID-19)数据库,用于预测死亡。我们进行了一项观察性研究(CORONATION-TR 登记)。2020 年 3 月 11 日至 6 月 22 日期间,土耳其所有因 COVID-19 住院的患者均包括在内。我们开发了该模型,并对时间和地理模型进行了验证。通过曲线下面积-接收者操作特征(AUC-ROC 或 c 指数)、R 和校准图评估模型性能。研究人群共包括 60980 名住院 COVID-19 患者。其中,7688 名(13%)患者转入重症监护病房,4867 名(8.0%)患者需要机械通气,2682 名(4.0%)患者死亡。多变量逻辑回归模型显示,30 天内死亡的最强预测因素包括年龄较大、乳酸脱氢酶、C 反应蛋白、中性粒细胞与淋巴细胞比值、肌酐、白蛋白和 D-二聚体水平升高、计算机断层扫描显示肺炎、糖尿病和心力衰竭入院时的状态(曲线下面积-接收者操作特征=0.942;95%置信区间:0.939-0.945;R=0.457)。时间和地理验证也较为有利。我们开发并验证了该预测模型,以识别所有住院 COVID-19 患者的院内死亡。我们的模型在时间和地理验证中均取得了合理的性能。

相似文献

6
The prognostic role of cardiac troponin in hospitalized COVID-19 patients.心脏肌钙蛋白在住院 COVID-19 患者中的预后作用。
Atherosclerosis. 2021 May;325:83-88. doi: 10.1016/j.atherosclerosis.2021.04.006. Epub 2021 Apr 17.

引用本文的文献

本文引用的文献

5
Multisystem Inflammatory Syndrome in U.S. Children and Adolescents.美国儿童和青少年中的多系统炎症综合征。
N Engl J Med. 2020 Jul 23;383(4):334-346. doi: 10.1056/NEJMoa2021680. Epub 2020 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验