Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Nat Commun. 2021 Feb 3;12(1):771. doi: 10.1038/s41467-021-21002-z.
Many animals use the Earth's geomagnetic field for orientation and navigation. Yet, the molecular and cellular underpinnings of the magnetic sense remain largely unknown. A biophysical model proposed that magnetoreception can be achieved through quantum effects of magnetically-sensitive radical pairs formed by the photoexcitation of cryptochrome (CRY) proteins. Studies in Drosophila are the only ones to date to have provided compelling evidence for the ultraviolet (UV)-A/blue light-sensitive type 1 CRY (CRY1) involvement in animal magnetoreception, and surprisingly extended this discovery to the light-insensitive mammalian-like type 2 CRYs (CRY2s) of both monarchs and humans. Here, we show that monarchs respond to a reversal of the inclination of the Earth's magnetic field in an UV-A/blue light and CRY1, but not CRY2, dependent manner. We further demonstrate that both antennae and eyes, which express CRY1, are magnetosensory organs. Our work argues that only light-sensitive CRYs function in animal light-dependent inclination-based magnetic sensing.
许多动物利用地球的地磁场进行定向和导航。然而,磁感觉的分子和细胞基础在很大程度上仍然未知。一个生物物理模型提出,通过由隐花色素(CRY)蛋白光激发形成的对磁场敏感的自由基对的量子效应,可以实现磁受体。迄今为止,果蝇的研究是唯一为紫外线(UV)-A/蓝光敏感的 1 型 CRY(CRY1)参与动物磁受体提供令人信服证据的研究,并出人意料地将这一发现扩展到了帝王蝶和人类的不敏感的哺乳动物样 2 型 CRYs(CRY2s)。在这里,我们表明帝王蝶以 UV-A/蓝光和 CRY1 依赖但不依赖 CRY2 的方式对地球磁场倾斜的反转做出反应。我们进一步证明,表达 CRY1 的触角和眼睛都是磁感觉器官。我们的工作表明,只有光敏感的 CRYs 在动物光依赖倾斜的磁场感应中起作用。